HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncol Structured version   Visualization version   GIF version

Theorem spansncol 30062
Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spansncol ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))

Proof of Theorem spansncol
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 11034 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
21ancoms 459 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
32adantll 711 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4 ax-hvmulass 29501 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
543com13 1123 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
653expa 1117 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
76eqeq2d 2747 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = ((𝑦 · 𝐵) · 𝐴) ↔ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
87biimprd 247 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → 𝑥 = ((𝑦 · 𝐵) · 𝐴)))
9 oveq1 7323 . . . . . . . 8 (𝑧 = (𝑦 · 𝐵) → (𝑧 · 𝐴) = ((𝑦 · 𝐵) · 𝐴))
109rspceeqv 3583 . . . . . . 7 (((𝑦 · 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑦 · 𝐵) · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴))
113, 8, 10syl6an 681 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
1211rexlimdva 3148 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
13123adant3 1131 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
14 divcl 11718 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 / 𝐵) ∈ ℂ)
15143expb 1119 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
1615adantlr 712 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
17 simprl 768 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
18 simplr 766 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℋ)
19 ax-hvmulass 29501 . . . . . . . . . . . . 13 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2016, 17, 18, 19syl3anc 1370 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
21 divcan1 11721 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
22213expb 1119 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2322adantlr 712 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2423oveq1d 7331 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = (𝑧 · 𝐴))
2520, 24eqtr3d 2778 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · (𝐵 · 𝐴)) = (𝑧 · 𝐴))
2625eqeq2d 2747 . . . . . . . . . 10 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴)) ↔ 𝑥 = (𝑧 · 𝐴)))
2726biimprd 247 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))))
28 oveq1 7323 . . . . . . . . . 10 (𝑦 = (𝑧 / 𝐵) → (𝑦 · (𝐵 · 𝐴)) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2928rspceeqv 3583 . . . . . . . . 9 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))
3016, 27, 29syl6an 681 . . . . . . . 8 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3130exp43 437 . . . . . . 7 (𝑧 ∈ ℂ → (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
3231com4l 92 . . . . . 6 (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
33323imp 1110 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))
3433rexlimdv 3146 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3513, 34impbid 211 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
36 hvmulcl 29507 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝐵 · 𝐴) ∈ ℋ)
3736ancoms 459 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℋ)
38 elspansn 30060 . . . . 5 ((𝐵 · 𝐴) ∈ ℋ → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
40393adant3 1131 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
41 elspansn 30060 . . . 4 (𝐴 ∈ ℋ → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
42413ad2ant1 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
4335, 40, 423bitr4d 310 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ 𝑥 ∈ (span‘{𝐴})))
4443eqrdv 2734 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070  {csn 4570  cfv 6465  (class class class)co 7316  cc 10948  0cc0 10950   · cmul 10955   / cdiv 11711  chba 29413   · csm 29415  spancspn 29426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cc 10270  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028  ax-addf 11029  ax-mulf 11030  ax-hilex 29493  ax-hfvadd 29494  ax-hvcom 29495  ax-hvass 29496  ax-hv0cl 29497  ax-hvaddid 29498  ax-hfvmul 29499  ax-hvmulid 29500  ax-hvmulass 29501  ax-hvdistr1 29502  ax-hvdistr2 29503  ax-hvmul0 29504  ax-hfi 29573  ax-his1 29576  ax-his2 29577  ax-his3 29578  ax-his4 29579  ax-hcompl 29696
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-supp 8026  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-oadd 8349  df-omul 8350  df-er 8547  df-map 8666  df-pm 8667  df-ixp 8735  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fsupp 9205  df-fi 9246  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-acn 9777  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-z 12399  df-dec 12517  df-uz 12662  df-q 12768  df-rp 12810  df-xneg 12927  df-xadd 12928  df-xmul 12929  df-ioo 13162  df-ico 13164  df-icc 13165  df-fz 13319  df-fzo 13462  df-fl 13591  df-seq 13801  df-exp 13862  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-rlim 15274  df-sum 15474  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-starv 17051  df-sca 17052  df-vsca 17053  df-ip 17054  df-tset 17055  df-ple 17056  df-ds 17058  df-unif 17059  df-hom 17060  df-cco 17061  df-rest 17207  df-topn 17208  df-0g 17226  df-gsum 17227  df-topgen 17228  df-pt 17229  df-prds 17232  df-xrs 17287  df-qtop 17292  df-imas 17293  df-xps 17295  df-mre 17369  df-mrc 17370  df-acs 17372  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-submnd 18505  df-mulg 18774  df-cntz 18996  df-cmn 19460  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-mopn 20673  df-fbas 20674  df-fg 20675  df-cnfld 20678  df-top 22123  df-topon 22140  df-topsp 22162  df-bases 22176  df-cld 22250  df-ntr 22251  df-cls 22252  df-nei 22329  df-cn 22458  df-cnp 22459  df-lm 22460  df-haus 22546  df-tx 22793  df-hmeo 22986  df-fil 23077  df-fm 23169  df-flim 23170  df-flf 23171  df-xms 23553  df-ms 23554  df-tms 23555  df-cfil 24499  df-cau 24500  df-cmet 24501  df-grpo 28987  df-gid 28988  df-ginv 28989  df-gdiv 28990  df-ablo 29039  df-vc 29053  df-nv 29086  df-va 29089  df-ba 29090  df-sm 29091  df-0v 29092  df-vs 29093  df-nmcv 29094  df-ims 29095  df-dip 29195  df-ssp 29216  df-ph 29307  df-cbn 29357  df-hnorm 29462  df-hba 29463  df-hvsub 29465  df-hlim 29466  df-hcau 29467  df-sh 29701  df-ch 29715  df-oc 29746  df-ch0 29747  df-span 29803
This theorem is referenced by:  spansneleq  30064  superpos  30848
  Copyright terms: Public domain W3C validator