HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncol Structured version   Visualization version   GIF version

Theorem spansncol 31495
Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spansncol ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))

Proof of Theorem spansncol
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 11211 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
21ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
32adantll 714 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4 ax-hvmulass 30934 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
543com13 1124 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
653expa 1118 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
76eqeq2d 2746 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = ((𝑦 · 𝐵) · 𝐴) ↔ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
87biimprd 248 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → 𝑥 = ((𝑦 · 𝐵) · 𝐴)))
9 oveq1 7410 . . . . . . . 8 (𝑧 = (𝑦 · 𝐵) → (𝑧 · 𝐴) = ((𝑦 · 𝐵) · 𝐴))
109rspceeqv 3624 . . . . . . 7 (((𝑦 · 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑦 · 𝐵) · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴))
113, 8, 10syl6an 684 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
1211rexlimdva 3141 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
13123adant3 1132 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
14 divcl 11900 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 / 𝐵) ∈ ℂ)
15143expb 1120 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
1615adantlr 715 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
17 simprl 770 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
18 simplr 768 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℋ)
19 ax-hvmulass 30934 . . . . . . . . . . . . 13 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2016, 17, 18, 19syl3anc 1373 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
21 divcan1 11903 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
22213expb 1120 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2322adantlr 715 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2423oveq1d 7418 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = (𝑧 · 𝐴))
2520, 24eqtr3d 2772 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · (𝐵 · 𝐴)) = (𝑧 · 𝐴))
2625eqeq2d 2746 . . . . . . . . . 10 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴)) ↔ 𝑥 = (𝑧 · 𝐴)))
2726biimprd 248 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))))
28 oveq1 7410 . . . . . . . . . 10 (𝑦 = (𝑧 / 𝐵) → (𝑦 · (𝐵 · 𝐴)) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2928rspceeqv 3624 . . . . . . . . 9 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))
3016, 27, 29syl6an 684 . . . . . . . 8 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3130exp43 436 . . . . . . 7 (𝑧 ∈ ℂ → (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
3231com4l 92 . . . . . 6 (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
33323imp 1110 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))
3433rexlimdv 3139 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3513, 34impbid 212 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
36 hvmulcl 30940 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝐵 · 𝐴) ∈ ℋ)
3736ancoms 458 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℋ)
38 elspansn 31493 . . . . 5 ((𝐵 · 𝐴) ∈ ℋ → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
40393adant3 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
41 elspansn 31493 . . . 4 (𝐴 ∈ ℋ → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
42413ad2ant1 1133 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
4335, 40, 423bitr4d 311 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ 𝑥 ∈ (span‘{𝐴})))
4443eqrdv 2733 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {csn 4601  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127   · cmul 11132   / cdiv 11892  chba 30846   · csm 30848  spancspn 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-cn 23163  df-cnp 23164  df-lm 23165  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cfil 25205  df-cau 25206  df-cmet 25207  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-span 31236
This theorem is referenced by:  spansneleq  31497  superpos  32281
  Copyright terms: Public domain W3C validator