| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spansncol | Structured version Visualization version GIF version | ||
| Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spansncol | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 ·ℎ 𝐴)}) = (span‘{𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl 11152 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ) | |
| 2 | 1 | ancoms 458 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ) |
| 3 | 2 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ) |
| 4 | ax-hvmulass 30936 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑦 · 𝐵) ·ℎ 𝐴) = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))) | |
| 5 | 4 | 3com13 1124 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) ·ℎ 𝐴) = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))) |
| 6 | 5 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) ·ℎ 𝐴) = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))) |
| 7 | 6 | eqeq2d 2740 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = ((𝑦 · 𝐵) ·ℎ 𝐴) ↔ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 8 | 7 | biimprd 248 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) → 𝑥 = ((𝑦 · 𝐵) ·ℎ 𝐴))) |
| 9 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑧 = (𝑦 · 𝐵) → (𝑧 ·ℎ 𝐴) = ((𝑦 · 𝐵) ·ℎ 𝐴)) | |
| 10 | 9 | rspceeqv 3611 | . . . . . . 7 ⊢ (((𝑦 · 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑦 · 𝐵) ·ℎ 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴)) |
| 11 | 3, 8, 10 | syl6an 684 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 12 | 11 | rexlimdva 3134 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 14 | divcl 11843 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 / 𝐵) ∈ ℂ) | |
| 15 | 14 | 3expb 1120 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ) |
| 16 | 15 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ) |
| 17 | simprl 770 | . . . . . . . . . . . . 13 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ) | |
| 18 | simplr 768 | . . . . . . . . . . . . 13 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℋ) | |
| 19 | ax-hvmulass 30936 | . . . . . . . . . . . . 13 ⊢ (((𝑧 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑧 / 𝐵) · 𝐵) ·ℎ 𝐴) = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴))) | |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . . . . . . . 12 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) ·ℎ 𝐴) = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴))) |
| 21 | divcan1 11846 | . . . . . . . . . . . . . . 15 ⊢ ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑧 / 𝐵) · 𝐵) = 𝑧) | |
| 22 | 21 | 3expb 1120 | . . . . . . . . . . . . . 14 ⊢ ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧) |
| 23 | 22 | adantlr 715 | . . . . . . . . . . . . 13 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧) |
| 24 | 23 | oveq1d 7402 | . . . . . . . . . . . 12 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) ·ℎ 𝐴) = (𝑧 ·ℎ 𝐴)) |
| 25 | 20, 24 | eqtr3d 2766 | . . . . . . . . . . 11 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴)) = (𝑧 ·ℎ 𝐴)) |
| 26 | 25 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴)) ↔ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 27 | 26 | biimprd 248 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 ·ℎ 𝐴) → 𝑥 = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 28 | oveq1 7394 | . . . . . . . . . 10 ⊢ (𝑦 = (𝑧 / 𝐵) → (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴))) | |
| 29 | 28 | rspceeqv 3611 | . . . . . . . . 9 ⊢ (((𝑧 / 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑧 / 𝐵) ·ℎ (𝐵 ·ℎ 𝐴))) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))) |
| 30 | 16, 27, 29 | syl6an 684 | . . . . . . . 8 ⊢ (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 ·ℎ 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 31 | 30 | exp43 436 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑥 = (𝑧 ·ℎ 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))))))) |
| 32 | 31 | com4l 92 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑧 ∈ ℂ → (𝑥 = (𝑧 ·ℎ 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))))))) |
| 33 | 32 | 3imp 1110 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 ∈ ℂ → (𝑥 = (𝑧 ·ℎ 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴))))) |
| 34 | 33 | rexlimdv 3132 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 35 | 13, 34 | impbid 212 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 36 | hvmulcl 30942 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ℎ 𝐴) ∈ ℋ) | |
| 37 | 36 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 ·ℎ 𝐴) ∈ ℋ) |
| 38 | elspansn 31495 | . . . . 5 ⊢ ((𝐵 ·ℎ 𝐴) ∈ ℋ → (𝑥 ∈ (span‘{(𝐵 ·ℎ 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) | |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (span‘{(𝐵 ·ℎ 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 40 | 39 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 ·ℎ 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ (𝐵 ·ℎ 𝐴)))) |
| 41 | elspansn 31495 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) | |
| 42 | 41 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴))) |
| 43 | 35, 40, 42 | 3bitr4d 311 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 ·ℎ 𝐴)}) ↔ 𝑥 ∈ (span‘{𝐴}))) |
| 44 | 43 | eqrdv 2727 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 ·ℎ 𝐴)}) = (span‘{𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 / cdiv 11835 ℋchba 30848 ·ℎ csm 30850 spancspn 30861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-span 31238 |
| This theorem is referenced by: spansneleq 31499 superpos 32283 |
| Copyright terms: Public domain | W3C validator |