HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncol Structured version   Visualization version   GIF version

Theorem spansncol 29831
Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spansncol ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))

Proof of Theorem spansncol
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 10886 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
21ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
32adantll 710 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4 ax-hvmulass 29270 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
543com13 1122 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
653expa 1116 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑦 · 𝐵) · 𝐴) = (𝑦 · (𝐵 · 𝐴)))
76eqeq2d 2749 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = ((𝑦 · 𝐵) · 𝐴) ↔ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
87biimprd 247 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → 𝑥 = ((𝑦 · 𝐵) · 𝐴)))
9 oveq1 7262 . . . . . . . 8 (𝑧 = (𝑦 · 𝐵) → (𝑧 · 𝐴) = ((𝑦 · 𝐵) · 𝐴))
109rspceeqv 3567 . . . . . . 7 (((𝑦 · 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑦 · 𝐵) · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴))
113, 8, 10syl6an 680 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
1211rexlimdva 3212 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
13123adant3 1130 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) → ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
14 divcl 11569 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 / 𝐵) ∈ ℂ)
15143expb 1118 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
1615adantlr 711 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑧 / 𝐵) ∈ ℂ)
17 simprl 767 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
18 simplr 765 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℋ)
19 ax-hvmulass 29270 . . . . . . . . . . . . 13 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2016, 17, 18, 19syl3anc 1369 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
21 divcan1 11572 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
22213expb 1118 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2322adantlr 711 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · 𝐵) = 𝑧)
2423oveq1d 7270 . . . . . . . . . . . 12 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝑧 / 𝐵) · 𝐵) · 𝐴) = (𝑧 · 𝐴))
2520, 24eqtr3d 2780 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑧 / 𝐵) · (𝐵 · 𝐴)) = (𝑧 · 𝐴))
2625eqeq2d 2749 . . . . . . . . . 10 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴)) ↔ 𝑥 = (𝑧 · 𝐴)))
2726biimprd 247 . . . . . . . . 9 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))))
28 oveq1 7262 . . . . . . . . . 10 (𝑦 = (𝑧 / 𝐵) → (𝑦 · (𝐵 · 𝐴)) = ((𝑧 / 𝐵) · (𝐵 · 𝐴)))
2928rspceeqv 3567 . . . . . . . . 9 (((𝑧 / 𝐵) ∈ ℂ ∧ 𝑥 = ((𝑧 / 𝐵) · (𝐵 · 𝐴))) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))
3016, 27, 29syl6an 680 . . . . . . . 8 (((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3130exp43 436 . . . . . . 7 (𝑧 ∈ ℂ → (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
3231com4l 92 . . . . . 6 (𝐴 ∈ ℋ → (𝐵 ∈ ℂ → (𝐵 ≠ 0 → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))))
33323imp 1109 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑧 ∈ ℂ → (𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)))))
3433rexlimdv 3211 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴) → ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3513, 34impbid 211 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴)) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
36 hvmulcl 29276 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝐵 · 𝐴) ∈ ℋ)
3736ancoms 458 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℋ)
38 elspansn 29829 . . . . 5 ((𝐵 · 𝐴) ∈ ℋ → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
40393adant3 1130 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · (𝐵 · 𝐴))))
41 elspansn 29829 . . . 4 (𝐴 ∈ ℋ → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
42413ad2ant1 1131 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{𝐴}) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 · 𝐴)))
4335, 40, 423bitr4d 310 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ (span‘{(𝐵 · 𝐴)}) ↔ 𝑥 ∈ (span‘{𝐴})))
4443eqrdv 2736 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (span‘{(𝐵 · 𝐴)}) = (span‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {csn 4558  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807   / cdiv 11562  chba 29182   · csm 29184  spancspn 29195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-span 29572
This theorem is referenced by:  spansneleq  29833  superpos  30617
  Copyright terms: Public domain W3C validator