| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbmul | Structured version Visualization version GIF version | ||
| Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30976 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 2 | kbfval 31915 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) | |
| 3 | 1, 2 | stoic3 1776 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) |
| 4 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 5 | cjcl 15031 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘𝐴) ∈ ℂ) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐶 ∈ ℋ) | |
| 8 | hvmulcl 30976 | . . . . 5 ⊢ (((∗‘𝐴) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) |
| 10 | kbfval 31915 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) | |
| 11 | 4, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) |
| 12 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 13 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ) | |
| 14 | hicl 31043 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ) |
| 16 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ) | |
| 17 | simpl2 1193 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 18 | ax-hvmulass 30970 | . . . . . 6 ⊢ (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) | |
| 19 | 15, 16, 17, 18 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) |
| 20 | 15, 16 | mulcomd 11155 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝐴 · (𝑥 ·ih 𝐶))) |
| 21 | his52 31050 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶))) | |
| 22 | 16, 12, 13, 21 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶))) |
| 23 | 20, 22 | eqtr4d 2767 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶))) |
| 24 | 23 | oveq1d 7368 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵)) |
| 25 | 19, 24 | eqtr3d 2766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)) = ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵)) |
| 26 | 25 | mpteq2dva 5188 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) |
| 27 | 11, 26 | eqtr4d 2767 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) |
| 28 | 3, 27 | eqtr4d 2767 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 · cmul 11033 ∗ccj 15022 ℋchba 30882 ·ℎ csm 30884 ·ih csp 30885 ketbra ck 30920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-hilex 30962 ax-hfvmul 30968 ax-hvmulass 30970 ax-hfi 31042 ax-his1 31045 ax-his3 31047 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-cj 15025 df-re 15026 df-im 15027 df-kb 31814 |
| This theorem is referenced by: kbass6 32084 |
| Copyright terms: Public domain | W3C validator |