| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbmul | Structured version Visualization version GIF version | ||
| Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30915 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 2 | kbfval 31854 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) | |
| 3 | 1, 2 | stoic3 1776 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) |
| 4 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 5 | cjcl 15047 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘𝐴) ∈ ℂ) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐶 ∈ ℋ) | |
| 8 | hvmulcl 30915 | . . . . 5 ⊢ (((∗‘𝐴) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) |
| 10 | kbfval 31854 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ ((∗‘𝐴) ·ℎ 𝐶) ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) | |
| 11 | 4, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) |
| 12 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 13 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ) | |
| 14 | hicl 30982 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ) |
| 16 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ) | |
| 17 | simpl2 1193 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 18 | ax-hvmulass 30909 | . . . . . 6 ⊢ (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) | |
| 19 | 15, 16, 17, 18 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) |
| 20 | 15, 16 | mulcomd 11171 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝐴 · (𝑥 ·ih 𝐶))) |
| 21 | his52 30989 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶))) | |
| 22 | 16, 12, 13, 21 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶))) |
| 23 | 20, 22 | eqtr4d 2767 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶))) |
| 24 | 23 | oveq1d 7384 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) ·ℎ 𝐵) = ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵)) |
| 25 | 19, 24 | eqtr3d 2766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)) = ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵)) |
| 26 | 25 | mpteq2dva 5195 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵))) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) ·ℎ 𝐶)) ·ℎ 𝐵))) |
| 27 | 11, 26 | eqtr4d 2767 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) ·ℎ (𝐴 ·ℎ 𝐵)))) |
| 28 | 3, 27 | eqtr4d 2767 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 · cmul 11049 ∗ccj 15038 ℋchba 30821 ·ℎ csm 30823 ·ih csp 30824 ketbra ck 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-hilex 30901 ax-hfvmul 30907 ax-hvmulass 30909 ax-hfi 30981 ax-his1 30984 ax-his3 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-cj 15041 df-re 15042 df-im 15043 df-kb 31753 |
| This theorem is referenced by: kbass6 32023 |
| Copyright terms: Public domain | W3C validator |