HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbmul Structured version   Visualization version   GIF version

Theorem kbmul 30036
Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))

Proof of Theorem kbmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmulcl 29094 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 kbfval 30033 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
31, 2stoic3 1784 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
4 simp2 1139 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐵 ∈ ℋ)
5 cjcl 14668 . . . . . 6 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
653ad2ant1 1135 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘𝐴) ∈ ℂ)
7 simp3 1140 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐶 ∈ ℋ)
8 hvmulcl 29094 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
96, 7, 8syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
10 kbfval 30033 . . . 4 ((𝐵 ∈ ℋ ∧ ((∗‘𝐴) · 𝐶) ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
114, 9, 10syl2anc 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
12 simpr 488 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
13 simpl3 1195 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
14 hicl 29161 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
1512, 13, 14syl2anc 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
16 simpl1 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
17 simpl2 1194 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
18 ax-hvmulass 29088 . . . . . 6 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
1915, 16, 17, 18syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
2015, 16mulcomd 10854 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝐴 · (𝑥 ·ih 𝐶)))
21 his52 29168 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2216, 12, 13, 21syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2320, 22eqtr4d 2780 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝑥 ·ih ((∗‘𝐴) · 𝐶)))
2423oveq1d 7228 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2519, 24eqtr3d 2779 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2625mpteq2dva 5150 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
2711, 26eqtr4d 2780 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
283, 27eqtr4d 2780 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727   · cmul 10734  ccj 14659  chba 29000   · csm 29002   ·ih csp 29003   ketbra ck 29038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-hilex 29080  ax-hfvmul 29086  ax-hvmulass 29088  ax-hfi 29160  ax-his1 29163  ax-his3 29165
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-2 11893  df-cj 14662  df-re 14663  df-im 14664  df-kb 29932
This theorem is referenced by:  kbass6  30202
  Copyright terms: Public domain W3C validator