HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbmul Structured version   Visualization version   GIF version

Theorem kbmul 30218
Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))

Proof of Theorem kbmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmulcl 29276 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 kbfval 30215 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
31, 2stoic3 1780 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
4 simp2 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐵 ∈ ℋ)
5 cjcl 14744 . . . . . 6 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
653ad2ant1 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘𝐴) ∈ ℂ)
7 simp3 1136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐶 ∈ ℋ)
8 hvmulcl 29276 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
96, 7, 8syl2anc 583 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
10 kbfval 30215 . . . 4 ((𝐵 ∈ ℋ ∧ ((∗‘𝐴) · 𝐶) ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
114, 9, 10syl2anc 583 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
12 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
13 simpl3 1191 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
14 hicl 29343 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
1512, 13, 14syl2anc 583 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
16 simpl1 1189 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
17 simpl2 1190 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
18 ax-hvmulass 29270 . . . . . 6 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
1915, 16, 17, 18syl3anc 1369 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
2015, 16mulcomd 10927 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝐴 · (𝑥 ·ih 𝐶)))
21 his52 29350 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2216, 12, 13, 21syl3anc 1369 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2320, 22eqtr4d 2781 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝑥 ·ih ((∗‘𝐴) · 𝐶)))
2423oveq1d 7270 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2519, 24eqtr3d 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2625mpteq2dva 5170 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
2711, 26eqtr4d 2781 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
283, 27eqtr4d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800   · cmul 10807  ccj 14735  chba 29182   · csm 29184   ·ih csp 29185   ketbra ck 29220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvmul 29268  ax-hvmulass 29270  ax-hfi 29342  ax-his1 29345  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-kb 30114
This theorem is referenced by:  kbass6  30384
  Copyright terms: Public domain W3C validator