HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbmul Structured version   Visualization version   GIF version

Theorem kbmul 31956
Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))

Proof of Theorem kbmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmulcl 31014 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 kbfval 31953 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
31, 2stoic3 1777 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
4 simp2 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐵 ∈ ℋ)
5 cjcl 15019 . . . . . 6 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
653ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘𝐴) ∈ ℂ)
7 simp3 1138 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐶 ∈ ℋ)
8 hvmulcl 31014 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
96, 7, 8syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · 𝐶) ∈ ℋ)
10 kbfval 31953 . . . 4 ((𝐵 ∈ ℋ ∧ ((∗‘𝐴) · 𝐶) ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
114, 9, 10syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
12 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
13 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
14 hicl 31081 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
1512, 13, 14syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
16 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
17 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
18 ax-hvmulass 31008 . . . . . 6 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
1915, 16, 17, 18syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)))
2015, 16mulcomd 11144 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝐴 · (𝑥 ·ih 𝐶)))
21 his52 31088 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2216, 12, 13, 21syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · 𝐶)) = (𝐴 · (𝑥 ·ih 𝐶)))
2320, 22eqtr4d 2771 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐴) = (𝑥 ·ih ((∗‘𝐴) · 𝐶)))
2423oveq1d 7370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐴) · 𝐵) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2519, 24eqtr3d 2770 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵)) = ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵))
2625mpteq2dva 5188 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih ((∗‘𝐴) · 𝐶)) · 𝐵)))
2711, 26eqtr4d 2771 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra ((∗‘𝐴) · 𝐶)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐶) · (𝐴 · 𝐵))))
283, 27eqtr4d 2771 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11015   · cmul 11022  ccj 15010  chba 30920   · csm 30922   ·ih csp 30923   ketbra ck 30958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-hilex 31000  ax-hfvmul 31006  ax-hvmulass 31008  ax-hfi 31080  ax-his1 31083  ax-his3 31085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-cj 15013  df-re 15014  df-im 15015  df-kb 31852
This theorem is referenced by:  kbass6  32122
  Copyright terms: Public domain W3C validator