Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvmulid | Structured version Visualization version GIF version |
Description: Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulid | ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29182 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℋ |
4 | c1 10803 | . . . 4 class 1 | |
5 | csm 29184 | . . . 4 class ·ℎ | |
6 | 4, 1, 5 | co 7255 | . . 3 class (1 ·ℎ 𝐴) |
7 | 6, 1 | wceq 1539 | . 2 wff (1 ·ℎ 𝐴) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0or 29288 hvsubid 29289 hvaddsubval 29296 hv2times 29324 hvnegdii 29325 hilvc 29425 hhssnv 29527 h1de2bi 29817 h1datomi 29844 mayete3i 29991 homulid2 30063 lnop0 30229 lnopaddi 30234 lnophmlem2 30280 lnfn0i 30305 lnfnaddi 30306 strlem1 30513 |
Copyright terms: Public domain | W3C validator |