Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvmulid | Structured version Visualization version GIF version |
Description: Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulid | ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29290 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2107 | . 2 wff 𝐴 ∈ ℋ |
4 | c1 10881 | . . . 4 class 1 | |
5 | csm 29292 | . . . 4 class ·ℎ | |
6 | 4, 1, 5 | co 7284 | . . 3 class (1 ·ℎ 𝐴) |
7 | 6, 1 | wceq 1539 | . 2 wff (1 ·ℎ 𝐴) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0or 29396 hvsubid 29397 hvaddsubval 29404 hv2times 29432 hvnegdii 29433 hilvc 29533 hhssnv 29635 h1de2bi 29925 h1datomi 29952 mayete3i 30099 homulid2 30171 lnop0 30337 lnopaddi 30342 lnophmlem2 30388 lnfn0i 30413 lnfnaddi 30414 strlem1 30621 |
Copyright terms: Public domain | W3C validator |