HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2bi Structured version   Visualization version   GIF version

Theorem h1de2bi 29904
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2bi (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))

Proof of Theorem h1de2bi
StepHypRef Expression
1 h1de2.2 . . . 4 𝐵 ∈ ℋ
2 his6 29449 . . . 4 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
31, 2ax-mp 5 . . 3 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
43necon3bii 2998 . 2 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
5 h1de2.1 . . . . . . . . 9 𝐴 ∈ ℋ
65, 1h1de2i 29903 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
76adantl 482 . . . . . . 7 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
87oveq2d 7285 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
91, 1hicli 29431 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℂ
109recclzi 11692 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ)
11 ax-hvmulass 29357 . . . . . . . . . . 11 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
129, 5, 11mp3an23 1452 . . . . . . . . . 10 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
1310, 12syl 17 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
14 ax-1cn 10922 . . . . . . . . . . 11 1 ∈ ℂ
1514, 9divcan1zi 11703 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1)
1615oveq1d 7284 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = (1 · 𝐴))
1713, 16eqtr3d 2782 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = (1 · 𝐴))
18 ax-hvmulid 29356 . . . . . . . . 9 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
195, 18ax-mp 5 . . . . . . . 8 (1 · 𝐴) = 𝐴
2017, 19eqtrdi 2796 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
2120adantr 481 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
228, 21eqtr3d 2782 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = 𝐴)
235, 1hicli 29431 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
24 ax-hvmulass 29357 . . . . . . . . 9 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2523, 1, 24mp3an23 1452 . . . . . . . 8 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2610, 25syl 17 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
27 mulcom 10950 . . . . . . . . . 10 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2810, 23, 27sylancl 586 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2923, 9divreczi 11705 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
3028, 29eqtr4d 2783 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)))
3130oveq1d 7284 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3226, 31eqtr3d 2782 . . . . . 6 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3332adantr 481 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3422, 33eqtr3d 2782 . . . 4 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3534ex 413 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
3623, 9divclzi 11702 . . . . 5 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
371elexi 3450 . . . . . . . . . . 11 𝐵 ∈ V
3837snss 4725 . . . . . . . . . 10 (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ)
391, 38mpbi 229 . . . . . . . . 9 {𝐵} ⊆ ℋ
40 occl 29654 . . . . . . . . 9 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
4139, 40ax-mp 5 . . . . . . . 8 (⊥‘{𝐵}) ∈ C
4241choccli 29657 . . . . . . 7 (⊥‘(⊥‘{𝐵})) ∈ C
4342chshii 29577 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ S
44 h1did 29901 . . . . . . 7 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
451, 44ax-mp 5 . . . . . 6 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
46 shmulcl 29568 . . . . . 6 (((⊥‘(⊥‘{𝐵})) ∈ S ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4743, 45, 46mp3an13 1451 . . . . 5 (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4836, 47syl 17 . . . 4 ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
49 eleq1 2828 . . . 4 (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
5048, 49syl5ibrcom 246 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
5135, 50impbid 211 . 2 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
524, 51sylbir 234 1 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wss 3892  {csn 4567  cfv 6431  (class class class)co 7269  cc 10862  0cc0 10864  1c1 10865   · cmul 10869   / cdiv 11624  chba 29269   · csm 29271   ·ih csp 29272  0c0v 29274   S csh 29278   C cch 29279  cort 29280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944  ax-hilex 29349  ax-hfvadd 29350  ax-hvcom 29351  ax-hvass 29352  ax-hv0cl 29353  ax-hvaddid 29354  ax-hfvmul 29355  ax-hvmulid 29356  ax-hvmulass 29357  ax-hvdistr1 29358  ax-hvdistr2 29359  ax-hvmul0 29360  ax-hfi 29429  ax-his1 29432  ax-his2 29433  ax-his3 29434  ax-his4 29435  ax-hcompl 29552
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-fi 9140  df-sup 9171  df-inf 9172  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-q 12680  df-rp 12722  df-xneg 12839  df-xadd 12840  df-xmul 12841  df-ioo 13074  df-icc 13077  df-fz 13231  df-fzo 13374  df-seq 13712  df-exp 13773  df-hash 14035  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-clim 15187  df-sum 15388  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-starv 16967  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-unif 16975  df-hom 16976  df-cco 16977  df-rest 17123  df-topn 17124  df-0g 17142  df-gsum 17143  df-topgen 17144  df-pt 17145  df-prds 17148  df-xrs 17203  df-qtop 17208  df-imas 17209  df-xps 17211  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-submnd 18421  df-mulg 18691  df-cntz 18913  df-cmn 19378  df-psmet 20579  df-xmet 20580  df-met 20581  df-bl 20582  df-mopn 20583  df-cnfld 20588  df-top 22033  df-topon 22050  df-topsp 22072  df-bases 22086  df-cn 22368  df-cnp 22369  df-lm 22370  df-haus 22456  df-tx 22703  df-hmeo 22896  df-xms 23463  df-ms 23464  df-tms 23465  df-cau 24410  df-grpo 28843  df-gid 28844  df-ginv 28845  df-gdiv 28846  df-ablo 28895  df-vc 28909  df-nv 28942  df-va 28945  df-ba 28946  df-sm 28947  df-0v 28948  df-vs 28949  df-nmcv 28950  df-ims 28951  df-dip 29051  df-hnorm 29318  df-hvsub 29321  df-hlim 29322  df-hcau 29323  df-sh 29557  df-ch 29571  df-oc 29602
This theorem is referenced by:  h1de2ctlem  29905  elspansn2  29917
  Copyright terms: Public domain W3C validator