![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h1de2bi | Structured version Visualization version GIF version |
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1de2.1 | ⊢ 𝐴 ∈ ℋ |
h1de2.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1de2bi | ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1de2.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
2 | his6 31131 | . . . 4 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
4 | 3 | necon3bii 2999 | . 2 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
5 | h1de2.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ | |
6 | 5, 1 | h1de2i 31585 | . . . . . . . 8 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) |
7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) |
8 | 7 | oveq2d 7464 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
9 | 1, 1 | hicli 31113 | . . . . . . . . . . 11 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
10 | 9 | recclzi 12019 | . . . . . . . . . 10 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ) |
11 | ax-hvmulass 31039 | . . . . . . . . . . 11 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) | |
12 | 9, 5, 11 | mp3an23 1453 | . . . . . . . . . 10 ⊢ ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) |
13 | 10, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) |
14 | ax-1cn 11242 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
15 | 14, 9 | divcan1zi 12030 | . . . . . . . . . 10 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1) |
16 | 15 | oveq1d 7463 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = (1 ·ℎ 𝐴)) |
17 | 13, 16 | eqtr3d 2782 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = (1 ·ℎ 𝐴)) |
18 | ax-hvmulid 31038 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
19 | 5, 18 | ax-mp 5 | . . . . . . . 8 ⊢ (1 ·ℎ 𝐴) = 𝐴 |
20 | 17, 19 | eqtrdi 2796 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = 𝐴) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = 𝐴) |
22 | 8, 21 | eqtr3d 2782 | . . . . 5 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = 𝐴) |
23 | 5, 1 | hicli 31113 | . . . . . . . . 9 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
24 | ax-hvmulass 31039 | . . . . . . . . 9 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) | |
25 | 23, 1, 24 | mp3an23 1453 | . . . . . . . 8 ⊢ ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
26 | 10, 25 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
27 | mulcom 11270 | . . . . . . . . . 10 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) | |
28 | 10, 23, 27 | sylancl 585 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) |
29 | 23, 9 | divreczi 12032 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) |
30 | 28, 29 | eqtr4d 2783 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵))) |
31 | 30 | oveq1d 7463 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
32 | 26, 31 | eqtr3d 2782 | . . . . . 6 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
33 | 32 | adantr 480 | . . . . 5 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
34 | 22, 33 | eqtr3d 2782 | . . . 4 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
35 | 34 | ex 412 | . . 3 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
36 | 23, 9 | divclzi 12029 | . . . . 5 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
37 | 1 | elexi 3511 | . . . . . . . . . . 11 ⊢ 𝐵 ∈ V |
38 | 37 | snss 4810 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ) |
39 | 1, 38 | mpbi 230 | . . . . . . . . 9 ⊢ {𝐵} ⊆ ℋ |
40 | occl 31336 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
42 | 41 | choccli 31339 | . . . . . . 7 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
43 | 42 | chshii 31259 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
44 | h1did 31583 | . . . . . . 7 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
45 | 1, 44 | ax-mp 5 | . . . . . 6 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
46 | shmulcl 31250 | . . . . . 6 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
47 | 43, 45, 46 | mp3an13 1452 | . . . . 5 ⊢ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
48 | 36, 47 | syl 17 | . . . 4 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
49 | eleq1 2832 | . . . 4 ⊢ (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
50 | 48, 49 | syl5ibrcom 247 | . . 3 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
51 | 35, 50 | impbid 212 | . 2 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
52 | 4, 51 | sylbir 235 | 1 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 ℋchba 30951 ·ℎ csm 30953 ·ih csp 30954 0ℎc0v 30956 Sℋ csh 30960 Cℋ cch 30961 ⊥cort 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cau 25309 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-hnorm 31000 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 |
This theorem is referenced by: h1de2ctlem 31587 elspansn2 31599 |
Copyright terms: Public domain | W3C validator |