HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2bi Structured version   Visualization version   GIF version

Theorem h1de2bi 29337
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2bi (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))

Proof of Theorem h1de2bi
StepHypRef Expression
1 h1de2.2 . . . 4 𝐵 ∈ ℋ
2 his6 28882 . . . 4 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
31, 2ax-mp 5 . . 3 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
43necon3bii 3039 . 2 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
5 h1de2.1 . . . . . . . . 9 𝐴 ∈ ℋ
65, 1h1de2i 29336 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
76adantl 485 . . . . . . 7 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
87oveq2d 7151 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
91, 1hicli 28864 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℂ
109recclzi 11354 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ)
11 ax-hvmulass 28790 . . . . . . . . . . 11 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
129, 5, 11mp3an23 1450 . . . . . . . . . 10 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
1310, 12syl 17 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
14 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
1514, 9divcan1zi 11365 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1)
1615oveq1d 7150 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = (1 · 𝐴))
1713, 16eqtr3d 2835 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = (1 · 𝐴))
18 ax-hvmulid 28789 . . . . . . . . 9 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
195, 18ax-mp 5 . . . . . . . 8 (1 · 𝐴) = 𝐴
2017, 19eqtrdi 2849 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
2120adantr 484 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
228, 21eqtr3d 2835 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = 𝐴)
235, 1hicli 28864 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
24 ax-hvmulass 28790 . . . . . . . . 9 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2523, 1, 24mp3an23 1450 . . . . . . . 8 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2610, 25syl 17 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
27 mulcom 10612 . . . . . . . . . 10 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2810, 23, 27sylancl 589 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2923, 9divreczi 11367 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
3028, 29eqtr4d 2836 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)))
3130oveq1d 7150 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3226, 31eqtr3d 2835 . . . . . 6 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3332adantr 484 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3422, 33eqtr3d 2835 . . . 4 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3534ex 416 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
3623, 9divclzi 11364 . . . . 5 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
371elexi 3460 . . . . . . . . . . 11 𝐵 ∈ V
3837snss 4679 . . . . . . . . . 10 (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ)
391, 38mpbi 233 . . . . . . . . 9 {𝐵} ⊆ ℋ
40 occl 29087 . . . . . . . . 9 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
4139, 40ax-mp 5 . . . . . . . 8 (⊥‘{𝐵}) ∈ C
4241choccli 29090 . . . . . . 7 (⊥‘(⊥‘{𝐵})) ∈ C
4342chshii 29010 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ S
44 h1did 29334 . . . . . . 7 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
451, 44ax-mp 5 . . . . . 6 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
46 shmulcl 29001 . . . . . 6 (((⊥‘(⊥‘{𝐵})) ∈ S ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4743, 45, 46mp3an13 1449 . . . . 5 (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4836, 47syl 17 . . . 4 ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
49 eleq1 2877 . . . 4 (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
5048, 49syl5ibrcom 250 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
5135, 50impbid 215 . 2 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
524, 51sylbir 238 1 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531   / cdiv 11286  chba 28702   · csm 28704   ·ih csp 28705  0c0v 28707   S csh 28711   C cch 28712  cort 28713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-lm 21834  df-haus 21920  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cau 23860  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-hnorm 28751  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035
This theorem is referenced by:  h1de2ctlem  29338  elspansn2  29350
  Copyright terms: Public domain W3C validator