HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2bi Structured version   Visualization version   GIF version

Theorem h1de2bi 31520
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2bi (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))

Proof of Theorem h1de2bi
StepHypRef Expression
1 h1de2.2 . . . 4 𝐵 ∈ ℋ
2 his6 31065 . . . 4 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
31, 2ax-mp 5 . . 3 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
43necon3bii 2983 . 2 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
5 h1de2.1 . . . . . . . . 9 𝐴 ∈ ℋ
65, 1h1de2i 31519 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
76adantl 481 . . . . . . 7 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
87oveq2d 7430 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
91, 1hicli 31047 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℂ
109recclzi 11975 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ)
11 ax-hvmulass 30973 . . . . . . . . . . 11 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
129, 5, 11mp3an23 1454 . . . . . . . . . 10 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
1310, 12syl 17 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
14 ax-1cn 11196 . . . . . . . . . . 11 1 ∈ ℂ
1514, 9divcan1zi 11986 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1)
1615oveq1d 7429 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = (1 · 𝐴))
1713, 16eqtr3d 2771 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = (1 · 𝐴))
18 ax-hvmulid 30972 . . . . . . . . 9 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
195, 18ax-mp 5 . . . . . . . 8 (1 · 𝐴) = 𝐴
2017, 19eqtrdi 2785 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
2120adantr 480 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
228, 21eqtr3d 2771 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = 𝐴)
235, 1hicli 31047 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
24 ax-hvmulass 30973 . . . . . . . . 9 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2523, 1, 24mp3an23 1454 . . . . . . . 8 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2610, 25syl 17 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
27 mulcom 11224 . . . . . . . . . 10 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2810, 23, 27sylancl 586 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2923, 9divreczi 11988 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
3028, 29eqtr4d 2772 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)))
3130oveq1d 7429 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3226, 31eqtr3d 2771 . . . . . 6 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3332adantr 480 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3422, 33eqtr3d 2771 . . . 4 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3534ex 412 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
3623, 9divclzi 11985 . . . . 5 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
371elexi 3487 . . . . . . . . . . 11 𝐵 ∈ V
3837snss 4767 . . . . . . . . . 10 (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ)
391, 38mpbi 230 . . . . . . . . 9 {𝐵} ⊆ ℋ
40 occl 31270 . . . . . . . . 9 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
4139, 40ax-mp 5 . . . . . . . 8 (⊥‘{𝐵}) ∈ C
4241choccli 31273 . . . . . . 7 (⊥‘(⊥‘{𝐵})) ∈ C
4342chshii 31193 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ S
44 h1did 31517 . . . . . . 7 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
451, 44ax-mp 5 . . . . . 6 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
46 shmulcl 31184 . . . . . 6 (((⊥‘(⊥‘{𝐵})) ∈ S ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4743, 45, 46mp3an13 1453 . . . . 5 (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4836, 47syl 17 . . . 4 ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
49 eleq1 2821 . . . 4 (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
5048, 49syl5ibrcom 247 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
5135, 50impbid 212 . 2 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
524, 51sylbir 235 1 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wss 3933  {csn 4608  cfv 6542  (class class class)co 7414  cc 11136  0cc0 11138  1c1 11139   · cmul 11143   / cdiv 11903  chba 30885   · csm 30887   ·ih csp 30888  0c0v 30890   S csh 30894   C cch 30895  cort 30896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218  ax-hilex 30965  ax-hfvadd 30966  ax-hvcom 30967  ax-hvass 30968  ax-hv0cl 30969  ax-hvaddid 30970  ax-hfvmul 30971  ax-hvmulid 30972  ax-hvmulass 30973  ax-hvdistr1 30974  ax-hvdistr2 30975  ax-hvmul0 30976  ax-hfi 31045  ax-his1 31048  ax-his2 31049  ax-his3 31050  ax-his4 31051  ax-hcompl 31168
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-icc 13377  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-rest 17443  df-topn 17444  df-0g 17462  df-gsum 17463  df-topgen 17464  df-pt 17465  df-prds 17468  df-xrs 17523  df-qtop 17528  df-imas 17529  df-xps 17531  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-mulg 19060  df-cntz 19309  df-cmn 19773  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-cn 23200  df-cnp 23201  df-lm 23202  df-haus 23288  df-tx 23535  df-hmeo 23728  df-xms 24294  df-ms 24295  df-tms 24296  df-cau 25245  df-grpo 30459  df-gid 30460  df-ginv 30461  df-gdiv 30462  df-ablo 30511  df-vc 30525  df-nv 30558  df-va 30561  df-ba 30562  df-sm 30563  df-0v 30564  df-vs 30565  df-nmcv 30566  df-ims 30567  df-dip 30667  df-hnorm 30934  df-hvsub 30937  df-hlim 30938  df-hcau 30939  df-sh 31173  df-ch 31187  df-oc 31218
This theorem is referenced by:  h1de2ctlem  31521  elspansn2  31533
  Copyright terms: Public domain W3C validator