HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2bi Structured version   Visualization version   GIF version

Theorem h1de2bi 31483
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2bi (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))

Proof of Theorem h1de2bi
StepHypRef Expression
1 h1de2.2 . . . 4 𝐵 ∈ ℋ
2 his6 31028 . . . 4 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
31, 2ax-mp 5 . . 3 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
43necon3bii 2977 . 2 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
5 h1de2.1 . . . . . . . . 9 𝐴 ∈ ℋ
65, 1h1de2i 31482 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
76adantl 481 . . . . . . 7 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
87oveq2d 7403 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
91, 1hicli 31010 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℂ
109recclzi 11907 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ)
11 ax-hvmulass 30936 . . . . . . . . . . 11 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
129, 5, 11mp3an23 1455 . . . . . . . . . 10 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
1310, 12syl 17 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)))
14 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
1514, 9divcan1zi 11918 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1)
1615oveq1d 7402 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) · 𝐴) = (1 · 𝐴))
1713, 16eqtr3d 2766 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = (1 · 𝐴))
18 ax-hvmulid 30935 . . . . . . . . 9 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
195, 18ax-mp 5 . . . . . . . 8 (1 · 𝐴) = 𝐴
2017, 19eqtrdi 2780 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
2120adantr 480 . . . . . 6 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐵 ·ih 𝐵) · 𝐴)) = 𝐴)
228, 21eqtr3d 2766 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = 𝐴)
235, 1hicli 31010 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
24 ax-hvmulass 30936 . . . . . . . . 9 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2523, 1, 24mp3an23 1455 . . . . . . . 8 ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
2610, 25syl 17 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)))
27 mulcom 11154 . . . . . . . . . 10 (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2810, 23, 27sylancl 586 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
2923, 9divreczi 11920 . . . . . . . . 9 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵))))
3028, 29eqtr4d 2767 . . . . . . . 8 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)))
3130oveq1d 7402 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3226, 31eqtr3d 2766 . . . . . 6 ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3332adantr 480 . . . . 5 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) · ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3422, 33eqtr3d 2766 . . . 4 (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3534ex 412 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
3623, 9divclzi 11917 . . . . 5 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
371elexi 3470 . . . . . . . . . . 11 𝐵 ∈ V
3837snss 4749 . . . . . . . . . 10 (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ)
391, 38mpbi 230 . . . . . . . . 9 {𝐵} ⊆ ℋ
40 occl 31233 . . . . . . . . 9 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
4139, 40ax-mp 5 . . . . . . . 8 (⊥‘{𝐵}) ∈ C
4241choccli 31236 . . . . . . 7 (⊥‘(⊥‘{𝐵})) ∈ C
4342chshii 31156 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ S
44 h1did 31480 . . . . . . 7 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
451, 44ax-mp 5 . . . . . 6 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
46 shmulcl 31147 . . . . . 6 (((⊥‘(⊥‘{𝐵})) ∈ S ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4743, 45, 46mp3an13 1454 . . . . 5 (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4836, 47syl 17 . . . 4 ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
49 eleq1 2816 . . . 4 (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
5048, 49syl5ibrcom 247 . . 3 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
5135, 50impbid 212 . 2 ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
524, 51sylbir 235 1 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  chba 30848   · csm 30850   ·ih csp 30851  0c0v 30853   S csh 30857   C cch 30858  cort 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cau 25156  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-hnorm 30897  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181
This theorem is referenced by:  h1de2ctlem  31484  elspansn2  31496
  Copyright terms: Public domain W3C validator