![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnaddi | Structured version Visualization version GIF version |
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfnaddi | β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ +β π΅)) = ((πβπ΄) + (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11167 | . . 3 β’ 1 β β | |
2 | lnfnl.1 | . . . 4 β’ π β LinFn | |
3 | 2 | lnfnli 31288 | . . 3 β’ ((1 β β β§ π΄ β β β§ π΅ β β) β (πβ((1 Β·β π΄) +β π΅)) = ((1 Β· (πβπ΄)) + (πβπ΅))) |
4 | 1, 3 | mp3an1 1448 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((1 Β·β π΄) +β π΅)) = ((1 Β· (πβπ΄)) + (πβπ΅))) |
5 | ax-hvmulid 30254 | . . . 4 β’ (π΄ β β β (1 Β·β π΄) = π΄) | |
6 | 5 | fvoveq1d 7430 | . . 3 β’ (π΄ β β β (πβ((1 Β·β π΄) +β π΅)) = (πβ(π΄ +β π΅))) |
7 | 6 | adantr 481 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((1 Β·β π΄) +β π΅)) = (πβ(π΄ +β π΅))) |
8 | 2 | lnfnfi 31289 | . . . . . 6 β’ π: ββΆβ |
9 | 8 | ffvelcdmi 7085 | . . . . 5 β’ (π΄ β β β (πβπ΄) β β) |
10 | 9 | mullidd 11231 | . . . 4 β’ (π΄ β β β (1 Β· (πβπ΄)) = (πβπ΄)) |
11 | 10 | adantr 481 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (1 Β· (πβπ΄)) = (πβπ΄)) |
12 | 11 | oveq1d 7423 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((1 Β· (πβπ΄)) + (πβπ΅)) = ((πβπ΄) + (πβπ΅))) |
13 | 4, 7, 12 | 3eqtr3d 2780 | 1 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ +β π΅)) = ((πβπ΄) + (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 βcc 11107 1c1 11110 + caddc 11112 Β· cmul 11114 βchba 30167 +β cva 30168 Β·β csm 30169 LinFnclf 30202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-mulcl 11171 ax-mulcom 11173 ax-mulass 11175 ax-distr 11176 ax-1rid 11179 ax-cnre 11182 ax-hilex 30247 ax-hvmulid 30254 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-lnfn 31096 |
This theorem is referenced by: lnfnaddmuli 31293 nlelshi 31308 |
Copyright terms: Public domain | W3C validator |