![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnaddi | Structured version Visualization version GIF version |
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 32072 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
4 | 1, 3 | mp3an1 1448 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
5 | ax-hvmulid 31038 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
6 | 5 | fvoveq1d 7470 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
8 | 2 | lnfnfi 32073 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
9 | 8 | ffvelcdmi 7117 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
10 | 9 | mullidd 11308 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
12 | 11 | oveq1d 7463 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
13 | 4, 7, 12 | 3eqtr3d 2788 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 ax-hilex 31031 ax-hvmulid 31038 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-lnfn 31880 |
This theorem is referenced by: lnfnaddmuli 32077 nlelshi 32092 |
Copyright terms: Public domain | W3C validator |