Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfnaddi | Structured version Visualization version GIF version |
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10646 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 29935 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
4 | 1, 3 | mp3an1 1445 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
5 | ax-hvmulid 28901 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
6 | 5 | fvoveq1d 7178 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
7 | 6 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
8 | 2 | lnfnfi 29936 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
9 | 8 | ffvelrni 6847 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
10 | 9 | mulid2d 10710 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
11 | 10 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
12 | 11 | oveq1d 7171 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
13 | 4, 7, 12 | 3eqtr3d 2801 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 1c1 10589 + caddc 10591 · cmul 10593 ℋchba 28814 +ℎ cva 28815 ·ℎ csm 28816 LinFnclf 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-mulcl 10650 ax-mulcom 10652 ax-mulass 10654 ax-distr 10655 ax-1rid 10658 ax-cnre 10661 ax-hilex 28894 ax-hvmulid 28901 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-map 8424 df-lnfn 29743 |
This theorem is referenced by: lnfnaddmuli 29940 nlelshi 29955 |
Copyright terms: Public domain | W3C validator |