![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnaddi | Structured version Visualization version GIF version |
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11211 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 32069 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
4 | 1, 3 | mp3an1 1447 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
5 | ax-hvmulid 31035 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
6 | 5 | fvoveq1d 7453 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
8 | 2 | lnfnfi 32070 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
9 | 8 | ffvelcdmi 7103 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
10 | 9 | mullidd 11277 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
12 | 11 | oveq1d 7446 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
13 | 4, 7, 12 | 3eqtr3d 2783 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 LinFnclf 30983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-mulcom 11217 ax-mulass 11219 ax-distr 11220 ax-1rid 11223 ax-cnre 11226 ax-hilex 31028 ax-hvmulid 31035 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-lnfn 31877 |
This theorem is referenced by: lnfnaddmuli 32074 nlelshi 32089 |
Copyright terms: Public domain | W3C validator |