| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnaddi | Structured version Visualization version GIF version | ||
| Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfnaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
| 3 | 2 | lnfnli 31988 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
| 4 | 1, 3 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵))) |
| 5 | ax-hvmulid 30954 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
| 6 | 5 | fvoveq1d 7371 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
| 8 | 2 | lnfnfi 31989 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
| 9 | 8 | ffvelcdmi 7017 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
| 10 | 9 | mullidd 11133 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 12 | 11 | oveq1d 7364 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇‘𝐴)) + (𝑇‘𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
| 13 | 4, 7, 12 | 3eqtr3d 2772 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 · cmul 11014 ℋchba 30867 +ℎ cva 30868 ·ℎ csm 30869 LinFnclf 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 ax-hilex 30947 ax-hvmulid 30954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-lnfn 31796 |
| This theorem is referenced by: lnfnaddmuli 31993 nlelshi 32008 |
| Copyright terms: Public domain | W3C validator |