HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homullid Structured version   Visualization version   GIF version

Theorem homullid 31832
Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homullid (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)

Proof of Theorem homullid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11242 . . . . 5 1 ∈ ℂ
2 homval 31773 . . . . 5 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
31, 2mp3an1 1448 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
4 ffvelcdm 7115 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
5 ax-hvmulid 31038 . . . . 5 ((𝑇𝑥) ∈ ℋ → (1 · (𝑇𝑥)) = (𝑇𝑥))
64, 5syl 17 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 · (𝑇𝑥)) = (𝑇𝑥))
73, 6eqtrd 2780 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
87ralrimiva 3152 . 2 (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
9 homulcl 31791 . . . 4 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ)
101, 9mpan 689 . . 3 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ)
11 hoeq 31792 . . 3 (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
1210, 11mpancom 687 . 2 (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
138, 12mpbid 232 1 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185  chba 30951   · csm 30953   ·op chot 30971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-1cn 11242  ax-hilex 31031  ax-hfvmul 31037  ax-hvmulid 31038
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-homul 31763
This theorem is referenced by:  honegneg  31838  ho2times  31851  leopmul  32166  nmopleid  32171  opsqrlem1  32172  opsqrlem6  32177
  Copyright terms: Public domain W3C validator