| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homullid | Structured version Visualization version GIF version | ||
| Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homullid | ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11071 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | homval 31723 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) | |
| 3 | 1, 2 | mp3an1 1450 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) |
| 4 | ffvelcdm 7020 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 5 | ax-hvmulid 30988 | . . . . 5 ⊢ ((𝑇‘𝑥) ∈ ℋ → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) |
| 7 | 3, 6 | eqtrd 2768 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 8 | 7 | ralrimiva 3125 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 9 | homulcl 31741 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ) | |
| 10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ) |
| 11 | hoeq 31742 | . . 3 ⊢ (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) | |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) |
| 13 | 8, 12 | mpbid 232 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 1c1 11014 ℋchba 30901 ·ℎ csm 30903 ·op chot 30921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-1cn 11071 ax-hilex 30981 ax-hfvmul 30987 ax-hvmulid 30988 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-homul 31713 |
| This theorem is referenced by: honegneg 31788 ho2times 31801 leopmul 32116 nmopleid 32121 opsqrlem1 32122 opsqrlem6 32127 |
| Copyright terms: Public domain | W3C validator |