| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homullid | Structured version Visualization version GIF version | ||
| Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homullid | ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | homval 31703 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) | |
| 3 | 1, 2 | mp3an1 1450 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) |
| 4 | ffvelcdm 7019 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 5 | ax-hvmulid 30968 | . . . . 5 ⊢ ((𝑇‘𝑥) ∈ ℋ → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) |
| 7 | 3, 6 | eqtrd 2764 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 8 | 7 | ralrimiva 3121 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 9 | homulcl 31721 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ) | |
| 10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ) |
| 11 | hoeq 31722 | . . 3 ⊢ (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) | |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) |
| 13 | 8, 12 | mpbid 232 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 1c1 11029 ℋchba 30881 ·ℎ csm 30883 ·op chot 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-hilex 30961 ax-hfvmul 30967 ax-hvmulid 30968 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-homul 31693 |
| This theorem is referenced by: honegneg 31768 ho2times 31781 leopmul 32096 nmopleid 32101 opsqrlem1 32102 opsqrlem6 32107 |
| Copyright terms: Public domain | W3C validator |