HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homullid Structured version   Visualization version   GIF version

Theorem homullid 31775
Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homullid (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)

Proof of Theorem homullid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11061 . . . . 5 1 ∈ ℂ
2 homval 31716 . . . . 5 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
31, 2mp3an1 1450 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
4 ffvelcdm 7014 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
5 ax-hvmulid 30981 . . . . 5 ((𝑇𝑥) ∈ ℋ → (1 · (𝑇𝑥)) = (𝑇𝑥))
64, 5syl 17 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 · (𝑇𝑥)) = (𝑇𝑥))
73, 6eqtrd 2766 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
87ralrimiva 3124 . 2 (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
9 homulcl 31734 . . . 4 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ)
101, 9mpan 690 . . 3 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ)
11 hoeq 31735 . . 3 (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
1210, 11mpancom 688 . 2 (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
138, 12mpbid 232 1 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  1c1 11004  chba 30894   · csm 30896   ·op chot 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-1cn 11061  ax-hilex 30974  ax-hfvmul 30980  ax-hvmulid 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-homul 31706
This theorem is referenced by:  honegneg  31781  ho2times  31794  leopmul  32109  nmopleid  32114  opsqrlem1  32115  opsqrlem6  32120
  Copyright terms: Public domain W3C validator