HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homullid Structured version   Visualization version   GIF version

Theorem homullid 31782
Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homullid (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)

Proof of Theorem homullid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11071 . . . . 5 1 ∈ ℂ
2 homval 31723 . . . . 5 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
31, 2mp3an1 1450 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 · (𝑇𝑥)))
4 ffvelcdm 7020 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
5 ax-hvmulid 30988 . . . . 5 ((𝑇𝑥) ∈ ℋ → (1 · (𝑇𝑥)) = (𝑇𝑥))
64, 5syl 17 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 · (𝑇𝑥)) = (𝑇𝑥))
73, 6eqtrd 2768 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
87ralrimiva 3125 . 2 (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥))
9 homulcl 31741 . . . 4 ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ)
101, 9mpan 690 . . 3 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ)
11 hoeq 31742 . . 3 (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
1210, 11mpancom 688 . 2 (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇𝑥) ↔ (1 ·op 𝑇) = 𝑇))
138, 12mpbid 232 1 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  1c1 11014  chba 30901   · csm 30903   ·op chot 30921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-1cn 11071  ax-hilex 30981  ax-hfvmul 30987  ax-hvmulid 30988
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-homul 31713
This theorem is referenced by:  honegneg  31788  ho2times  31801  leopmul  32116  nmopleid  32121  opsqrlem1  32122  opsqrlem6  32127
  Copyright terms: Public domain W3C validator