| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homullid | Structured version Visualization version GIF version | ||
| Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homullid | ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11061 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | homval 31716 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) | |
| 3 | 1, 2 | mp3an1 1450 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) |
| 4 | ffvelcdm 7014 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 5 | ax-hvmulid 30981 | . . . . 5 ⊢ ((𝑇‘𝑥) ∈ ℋ → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) |
| 7 | 3, 6 | eqtrd 2766 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 8 | 7 | ralrimiva 3124 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 9 | homulcl 31734 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ) | |
| 10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ) |
| 11 | hoeq 31735 | . . 3 ⊢ (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) | |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) |
| 13 | 8, 12 | mpbid 232 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 1c1 11004 ℋchba 30894 ·ℎ csm 30896 ·op chot 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-1cn 11061 ax-hilex 30974 ax-hfvmul 30980 ax-hvmulid 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-homul 31706 |
| This theorem is referenced by: honegneg 31781 ho2times 31794 leopmul 32109 nmopleid 32114 opsqrlem1 32115 opsqrlem6 32120 |
| Copyright terms: Public domain | W3C validator |