| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homullid | Structured version Visualization version GIF version | ||
| Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homullid | ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | homval 31670 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) | |
| 3 | 1, 2 | mp3an1 1450 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (1 ·ℎ (𝑇‘𝑥))) |
| 4 | ffvelcdm 7053 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 5 | ax-hvmulid 30935 | . . . . 5 ⊢ ((𝑇‘𝑥) ∈ ℋ → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (1 ·ℎ (𝑇‘𝑥)) = (𝑇‘𝑥)) |
| 7 | 3, 6 | eqtrd 2764 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 8 | 7 | ralrimiva 3125 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥)) |
| 9 | homulcl 31688 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op 𝑇): ℋ⟶ ℋ) | |
| 10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇): ℋ⟶ ℋ) |
| 11 | hoeq 31689 | . . 3 ⊢ (((1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) | |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ((1 ·op 𝑇)‘𝑥) = (𝑇‘𝑥) ↔ (1 ·op 𝑇) = 𝑇)) |
| 13 | 8, 12 | mpbid 232 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 ℋchba 30848 ·ℎ csm 30850 ·op chot 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-hilex 30928 ax-hfvmul 30934 ax-hvmulid 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-homul 31660 |
| This theorem is referenced by: honegneg 31735 ho2times 31748 leopmul 32063 nmopleid 32068 opsqrlem1 32069 opsqrlem6 32074 |
| Copyright terms: Public domain | W3C validator |