![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopaddi | Structured version Visualization version GIF version |
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11203 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
3 | 2 | lnopli 31855 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
4 | 1, 3 | mp3an1 1444 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
5 | ax-hvmulid 30893 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
6 | 5 | fvoveq1d 7441 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
7 | 6 | adantr 479 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
8 | 2 | lnopfi 31856 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
9 | 8 | ffvelcdmi 7092 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
10 | ax-hvmulid 30893 | . . . . 5 ⊢ ((𝑇‘𝐴) ∈ ℋ → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) |
12 | 11 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) |
13 | 12 | oveq1d 7434 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
14 | 4, 7, 13 | 3eqtr3d 2773 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 1c1 11146 ℋchba 30806 +ℎ cva 30807 ·ℎ csm 30808 LinOpclo 30834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-1cn 11203 ax-hilex 30886 ax-hvmulid 30893 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-lnop 31728 |
This theorem is referenced by: lnopaddmuli 31860 lnophsi 31888 lnopeq0lem1 31892 lnophmlem2 31904 imaelshi 31945 cnlnadjlem2 31955 |
Copyright terms: Public domain | W3C validator |