HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddi Structured version   Visualization version   GIF version

Theorem lnopaddi 31950
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopaddi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))

Proof of Theorem lnopaddi
StepHypRef Expression
1 ax-1cn 11102 . . 3 1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopli 31947 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
41, 3mp3an1 1450 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
5 ax-hvmulid 30985 . . . 4 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
65fvoveq1d 7391 . . 3 (𝐴 ∈ ℋ → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
76adantr 480 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
82lnopfi 31948 . . . . . 6 𝑇: ℋ⟶ ℋ
98ffvelcdmi 7037 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
10 ax-hvmulid 30985 . . . . 5 ((𝑇𝐴) ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
119, 10syl 17 . . . 4 (𝐴 ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
1211adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇𝐴)) = (𝑇𝐴))
1312oveq1d 7384 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇𝐴)) + (𝑇𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
144, 7, 133eqtr3d 2772 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045  chba 30898   + cva 30899   · csm 30900  LinOpclo 30926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-1cn 11102  ax-hilex 30978  ax-hvmulid 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lnop 31820
This theorem is referenced by:  lnopaddmuli  31952  lnophsi  31980  lnopeq0lem1  31984  lnophmlem2  31996  imaelshi  32037  cnlnadjlem2  32047
  Copyright terms: Public domain W3C validator