HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddi Structured version   Visualization version   GIF version

Theorem lnopaddi 29419
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopaddi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))

Proof of Theorem lnopaddi
StepHypRef Expression
1 ax-1cn 10332 . . 3 1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopli 29416 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
41, 3mp3an1 1521 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
5 ax-hvmulid 28452 . . . 4 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
65fvoveq1d 6946 . . 3 (𝐴 ∈ ℋ → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
76adantr 474 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
82lnopfi 29417 . . . . . 6 𝑇: ℋ⟶ ℋ
98ffvelrni 6624 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
10 ax-hvmulid 28452 . . . . 5 ((𝑇𝐴) ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
119, 10syl 17 . . . 4 (𝐴 ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
1211adantr 474 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇𝐴)) = (𝑇𝐴))
1312oveq1d 6939 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇𝐴)) + (𝑇𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
144, 7, 133eqtr3d 2822 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  cc 10272  1c1 10275  chba 28365   + cva 28366   · csm 28367  LinOpclo 28393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-1cn 10332  ax-hilex 28445  ax-hvmulid 28452
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-lnop 29289
This theorem is referenced by:  lnopaddmuli  29421  lnophsi  29449  lnopeq0lem1  29453  lnophmlem2  29465  imaelshi  29506  cnlnadjlem2  29516
  Copyright terms: Public domain W3C validator