HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddi Structured version   Visualization version   GIF version

Theorem lnopaddi 29743
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopaddi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))

Proof of Theorem lnopaddi
StepHypRef Expression
1 ax-1cn 10580 . . 3 1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopli 29740 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
41, 3mp3an1 1445 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
5 ax-hvmulid 28778 . . . 4 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
65fvoveq1d 7160 . . 3 (𝐴 ∈ ℋ → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
76adantr 484 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
82lnopfi 29741 . . . . . 6 𝑇: ℋ⟶ ℋ
98ffvelrni 6831 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
10 ax-hvmulid 28778 . . . . 5 ((𝑇𝐴) ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
119, 10syl 17 . . . 4 (𝐴 ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
1211adantr 484 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇𝐴)) = (𝑇𝐴))
1312oveq1d 7153 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇𝐴)) + (𝑇𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
144, 7, 133eqtr3d 2867 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6336  (class class class)co 7138  cc 10520  1c1 10523  chba 28691   + cva 28692   · csm 28693  LinOpclo 28719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-1cn 10580  ax-hilex 28771  ax-hvmulid 28778
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-map 8391  df-lnop 29613
This theorem is referenced by:  lnopaddmuli  29745  lnophsi  29773  lnopeq0lem1  29777  lnophmlem2  29789  imaelshi  29830  cnlnadjlem2  29840
  Copyright terms: Public domain W3C validator