HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddi Structured version   Visualization version   GIF version

Theorem lnopaddi 29170
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopaddi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))

Proof of Theorem lnopaddi
StepHypRef Expression
1 ax-1cn 10196 . . 3 1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopli 29167 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
41, 3mp3an1 1559 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
5 ax-hvmulid 28203 . . . 4 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
65fvoveq1d 6815 . . 3 (𝐴 ∈ ℋ → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
76adantr 466 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
82lnopfi 29168 . . . . . 6 𝑇: ℋ⟶ ℋ
98ffvelrni 6501 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
10 ax-hvmulid 28203 . . . . 5 ((𝑇𝐴) ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
119, 10syl 17 . . . 4 (𝐴 ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
1211adantr 466 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇𝐴)) = (𝑇𝐴))
1312oveq1d 6808 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇𝐴)) + (𝑇𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
144, 7, 133eqtr3d 2813 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  cc 10136  1c1 10139  chil 28116   + cva 28117   · csm 28118  LinOpclo 28144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-1cn 10196  ax-hilex 28196  ax-hvmulid 28203
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-lnop 29040
This theorem is referenced by:  lnopaddmuli  29172  lnophsi  29200  lnopeq0lem1  29204  lnophmlem2  29216  imaelshi  29257  cnlnadjlem2  29267
  Copyright terms: Public domain W3C validator