HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddi Structured version   Visualization version   GIF version

Theorem lnopaddi 30234
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopaddi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))

Proof of Theorem lnopaddi
StepHypRef Expression
1 ax-1cn 10860 . . 3 1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopli 30231 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
41, 3mp3an1 1446 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = ((1 · (𝑇𝐴)) + (𝑇𝐵)))
5 ax-hvmulid 29269 . . . 4 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
65fvoveq1d 7277 . . 3 (𝐴 ∈ ℋ → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
76adantr 480 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 · 𝐴) + 𝐵)) = (𝑇‘(𝐴 + 𝐵)))
82lnopfi 30232 . . . . . 6 𝑇: ℋ⟶ ℋ
98ffvelrni 6942 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
10 ax-hvmulid 29269 . . . . 5 ((𝑇𝐴) ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
119, 10syl 17 . . . 4 (𝐴 ∈ ℋ → (1 · (𝑇𝐴)) = (𝑇𝐴))
1211adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 · (𝑇𝐴)) = (𝑇𝐴))
1312oveq1d 7270 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 · (𝑇𝐴)) + (𝑇𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
144, 7, 133eqtr3d 2786 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803  chba 29182   + cva 29183   · csm 29184  LinOpclo 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-hilex 29262  ax-hvmulid 29269
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-lnop 30104
This theorem is referenced by:  lnopaddmuli  30236  lnophsi  30264  lnopeq0lem1  30268  lnophmlem2  30280  imaelshi  30321  cnlnadjlem2  30331
  Copyright terms: Public domain W3C validator