| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopaddi | Structured version Visualization version GIF version | ||
| Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp |
| Ref | Expression |
|---|---|
| lnopaddi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11187 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
| 3 | 2 | lnopli 31949 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
| 4 | 1, 3 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
| 5 | ax-hvmulid 30987 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
| 6 | 5 | fvoveq1d 7427 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((1 ·ℎ 𝐴) +ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ 𝐵))) |
| 8 | 2 | lnopfi 31950 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ |
| 9 | 8 | ffvelcdmi 7073 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
| 10 | ax-hvmulid 30987 | . . . . 5 ⊢ ((𝑇‘𝐴) ∈ ℋ → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (1 ·ℎ (𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 13 | 12 | oveq1d 7420 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((1 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
| 14 | 4, 7, 13 | 3eqtr3d 2778 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 LinOpclo 30928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-hilex 30980 ax-hvmulid 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-lnop 31822 |
| This theorem is referenced by: lnopaddmuli 31954 lnophsi 31982 lnopeq0lem1 31986 lnophmlem2 31998 imaelshi 32039 cnlnadjlem2 32049 |
| Copyright terms: Public domain | W3C validator |