![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnop0 | Structured version Visualization version GIF version |
Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnop0 | ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11211 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
2 | ax-hv0cl 31032 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
3 | 1, 2 | hvmulcli 31043 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
4 | ax-hvaddid 31033 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
6 | ax-hvmulid 31035 | . . . . . . . 8 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
7 | 2, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
8 | 5, 7 | eqtri 2763 | . . . . . 6 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
9 | 8 | fveq2i 6910 | . . . . 5 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
10 | lnopl 31943 | . . . . . . 7 ⊢ (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) | |
11 | 2, 2, 10 | mpanr12 705 | . . . . . 6 ⊢ ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
12 | 1, 11 | mpan2 691 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
13 | 9, 12 | eqtr3id 2789 | . . . 4 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
14 | lnopf 31888 | . . . . . . 7 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
15 | ffvelcdm 7101 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘0ℎ) ∈ ℋ) | |
16 | 2, 15 | mpan2 691 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇‘0ℎ) ∈ ℋ) |
17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) ∈ ℋ) |
18 | ax-hvmulid 31035 | . . . . . 6 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
20 | 19 | oveq1d 7446 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ)) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
21 | 13, 20 | eqtrd 2775 | . . 3 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
22 | 21 | oveq1d 7446 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ))) |
23 | hvsubid 31055 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) | |
24 | 17, 23 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) |
25 | hvpncan 31068 | . . . 4 ⊢ (((𝑇‘0ℎ) ∈ ℋ ∧ (𝑇‘0ℎ) ∈ ℋ) → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
26 | 25 | anidms 566 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
27 | 17, 26 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
28 | 22, 24, 27 | 3eqtr3rd 2784 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 0ℎc0v 30953 −ℎ cmv 30954 LinOpclo 30976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-hilex 31028 ax-hfvadd 31029 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvdistr2 31038 ax-hvmul0 31039 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 df-hvsub 31000 df-lnop 31870 |
This theorem is referenced by: lnopmul 31996 lnop0i 31999 |
Copyright terms: Public domain | W3C validator |