![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnop0 | Structured version Visualization version GIF version |
Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnop0 | ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
2 | ax-hv0cl 31035 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
3 | 1, 2 | hvmulcli 31046 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
4 | ax-hvaddid 31036 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
6 | ax-hvmulid 31038 | . . . . . . . 8 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
7 | 2, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
8 | 5, 7 | eqtri 2768 | . . . . . 6 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
9 | 8 | fveq2i 6923 | . . . . 5 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
10 | lnopl 31946 | . . . . . . 7 ⊢ (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) | |
11 | 2, 2, 10 | mpanr12 704 | . . . . . 6 ⊢ ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
12 | 1, 11 | mpan2 690 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
13 | 9, 12 | eqtr3id 2794 | . . . 4 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
14 | lnopf 31891 | . . . . . . 7 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
15 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘0ℎ) ∈ ℋ) | |
16 | 2, 15 | mpan2 690 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇‘0ℎ) ∈ ℋ) |
17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) ∈ ℋ) |
18 | ax-hvmulid 31038 | . . . . . 6 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
20 | 19 | oveq1d 7463 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ)) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
21 | 13, 20 | eqtrd 2780 | . . 3 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
22 | 21 | oveq1d 7463 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ))) |
23 | hvsubid 31058 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) | |
24 | 17, 23 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) |
25 | hvpncan 31071 | . . . 4 ⊢ (((𝑇‘0ℎ) ∈ ℋ ∧ (𝑇‘0ℎ) ∈ ℋ) → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
26 | 25 | anidms 566 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
27 | 17, 26 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
28 | 22, 24, 27 | 3eqtr3rd 2789 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 0ℎc0v 30956 −ℎ cmv 30957 LinOpclo 30979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hilex 31031 ax-hfvadd 31032 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-hvsub 31003 df-lnop 31873 |
This theorem is referenced by: lnopmul 31999 lnop0i 32002 |
Copyright terms: Public domain | W3C validator |