Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnop0 | Structured version Visualization version GIF version |
Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnop0 | ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10626 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
2 | ax-hv0cl 28878 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
3 | 1, 2 | hvmulcli 28889 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
4 | ax-hvaddid 28879 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
6 | ax-hvmulid 28881 | . . . . . . . 8 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
7 | 2, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
8 | 5, 7 | eqtri 2782 | . . . . . 6 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
9 | 8 | fveq2i 6662 | . . . . 5 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
10 | lnopl 29789 | . . . . . . 7 ⊢ (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) | |
11 | 2, 2, 10 | mpanr12 705 | . . . . . 6 ⊢ ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
12 | 1, 11 | mpan2 691 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
13 | 9, 12 | syl5eqr 2808 | . . . 4 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
14 | lnopf 29734 | . . . . . . 7 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
15 | ffvelrn 6841 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘0ℎ) ∈ ℋ) | |
16 | 2, 15 | mpan2 691 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇‘0ℎ) ∈ ℋ) |
17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) ∈ ℋ) |
18 | ax-hvmulid 28881 | . . . . . 6 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
20 | 19 | oveq1d 7166 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ)) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
21 | 13, 20 | eqtrd 2794 | . . 3 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
22 | 21 | oveq1d 7166 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ))) |
23 | hvsubid 28901 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) | |
24 | 17, 23 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) |
25 | hvpncan 28914 | . . . 4 ⊢ (((𝑇‘0ℎ) ∈ ℋ ∧ (𝑇‘0ℎ) ∈ ℋ) → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
26 | 25 | anidms 571 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
27 | 17, 26 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
28 | 22, 24, 27 | 3eqtr3rd 2803 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 1c1 10569 ℋchba 28794 +ℎ cva 28795 ·ℎ csm 28796 0ℎc0v 28799 −ℎ cmv 28800 LinOpclo 28822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-hilex 28874 ax-hfvadd 28875 ax-hvass 28877 ax-hv0cl 28878 ax-hvaddid 28879 ax-hfvmul 28880 ax-hvmulid 28881 ax-hvdistr2 28884 ax-hvmul0 28885 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-ltxr 10711 df-sub 10903 df-neg 10904 df-hvsub 28846 df-lnop 29716 |
This theorem is referenced by: lnopmul 29842 lnop0i 29845 |
Copyright terms: Public domain | W3C validator |