HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnop0 Structured version   Visualization version   GIF version

Theorem lnop0 31895
Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnop0 (𝑇 ∈ LinOp → (𝑇‘0) = 0)

Proof of Theorem lnop0
StepHypRef Expression
1 ax-1cn 11126 . . . . . . . . 9 1 ∈ ℂ
2 ax-hv0cl 30932 . . . . . . . . 9 0 ∈ ℋ
31, 2hvmulcli 30943 . . . . . . . 8 (1 · 0) ∈ ℋ
4 ax-hvaddid 30933 . . . . . . . 8 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
53, 4ax-mp 5 . . . . . . 7 ((1 · 0) + 0) = (1 · 0)
6 ax-hvmulid 30935 . . . . . . . 8 (0 ∈ ℋ → (1 · 0) = 0)
72, 6ax-mp 5 . . . . . . 7 (1 · 0) = 0
85, 7eqtri 2752 . . . . . 6 ((1 · 0) + 0) = 0
98fveq2i 6861 . . . . 5 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
10 lnopl 31843 . . . . . . 7 (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0 ∈ ℋ ∧ 0 ∈ ℋ)) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
112, 2, 10mpanr12 705 . . . . . 6 ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
121, 11mpan2 691 . . . . 5 (𝑇 ∈ LinOp → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
139, 12eqtr3id 2778 . . . 4 (𝑇 ∈ LinOp → (𝑇‘0) = ((1 · (𝑇‘0)) + (𝑇‘0)))
14 lnopf 31788 . . . . . . 7 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
15 ffvelcdm 7053 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 0 ∈ ℋ) → (𝑇‘0) ∈ ℋ)
162, 15mpan2 691 . . . . . . 7 (𝑇: ℋ⟶ ℋ → (𝑇‘0) ∈ ℋ)
1714, 16syl 17 . . . . . 6 (𝑇 ∈ LinOp → (𝑇‘0) ∈ ℋ)
18 ax-hvmulid 30935 . . . . . 6 ((𝑇‘0) ∈ ℋ → (1 · (𝑇‘0)) = (𝑇‘0))
1917, 18syl 17 . . . . 5 (𝑇 ∈ LinOp → (1 · (𝑇‘0)) = (𝑇‘0))
2019oveq1d 7402 . . . 4 (𝑇 ∈ LinOp → ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0)))
2113, 20eqtrd 2764 . . 3 (𝑇 ∈ LinOp → (𝑇‘0) = ((𝑇‘0) + (𝑇‘0)))
2221oveq1d 7402 . 2 (𝑇 ∈ LinOp → ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)))
23 hvsubid 30955 . . 3 ((𝑇‘0) ∈ ℋ → ((𝑇‘0) − (𝑇‘0)) = 0)
2417, 23syl 17 . 2 (𝑇 ∈ LinOp → ((𝑇‘0) − (𝑇‘0)) = 0)
25 hvpncan 30968 . . . 4 (((𝑇‘0) ∈ ℋ ∧ (𝑇‘0) ∈ ℋ) → (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0))
2625anidms 566 . . 3 ((𝑇‘0) ∈ ℋ → (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0))
2717, 26syl 17 . 2 (𝑇 ∈ LinOp → (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0))
2822, 24, 273eqtr3rd 2773 1 (𝑇 ∈ LinOp → (𝑇‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069  chba 30848   + cva 30849   · csm 30850  0c0v 30853   cmv 30854  LinOpclo 30876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hilex 30928  ax-hfvadd 30929  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvdistr2 30938  ax-hvmul0 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-hvsub 30900  df-lnop 31770
This theorem is referenced by:  lnopmul  31896  lnop0i  31899
  Copyright terms: Public domain W3C validator