| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnop0 | Structured version Visualization version GIF version | ||
| Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnop0 | ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 2 | ax-hv0cl 30939 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | hvmulcli 30950 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
| 4 | ax-hvaddid 30940 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
| 6 | ax-hvmulid 30942 | . . . . . . . 8 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
| 7 | 2, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
| 8 | 5, 7 | eqtri 2753 | . . . . . 6 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
| 9 | 8 | fveq2i 6864 | . . . . 5 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
| 10 | lnopl 31850 | . . . . . . 7 ⊢ (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) | |
| 11 | 2, 2, 10 | mpanr12 705 | . . . . . 6 ⊢ ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 12 | 1, 11 | mpan2 691 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 13 | 9, 12 | eqtr3id 2779 | . . . 4 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 14 | lnopf 31795 | . . . . . . 7 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 15 | ffvelcdm 7056 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘0ℎ) ∈ ℋ) | |
| 16 | 2, 15 | mpan2 691 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇‘0ℎ) ∈ ℋ) |
| 17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) ∈ ℋ) |
| 18 | ax-hvmulid 30942 | . . . . . 6 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 20 | 19 | oveq1d 7405 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ)) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
| 21 | 13, 20 | eqtrd 2765 | . . 3 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
| 22 | 21 | oveq1d 7405 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ))) |
| 23 | hvsubid 30962 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) | |
| 24 | 17, 23 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) |
| 25 | hvpncan 30975 | . . . 4 ⊢ (((𝑇‘0ℎ) ∈ ℋ ∧ (𝑇‘0ℎ) ∈ ℋ) → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
| 26 | 25 | anidms 566 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 27 | 17, 26 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 28 | 22, 24, 27 | 3eqtr3rd 2774 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 1c1 11076 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 −ℎ cmv 30861 LinOpclo 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-hvsub 30907 df-lnop 31777 |
| This theorem is referenced by: lnopmul 31903 lnop0i 31906 |
| Copyright terms: Public domain | W3C validator |