| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnop0 | Structured version Visualization version GIF version | ||
| Description: The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnop0 | ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 2 | ax-hv0cl 30932 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | hvmulcli 30943 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
| 4 | ax-hvaddid 30933 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
| 6 | ax-hvmulid 30935 | . . . . . . . 8 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
| 7 | 2, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
| 8 | 5, 7 | eqtri 2752 | . . . . . 6 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
| 9 | 8 | fveq2i 6861 | . . . . 5 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
| 10 | lnopl 31843 | . . . . . . 7 ⊢ (((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) ∧ (0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) | |
| 11 | 2, 2, 10 | mpanr12 705 | . . . . . 6 ⊢ ((𝑇 ∈ LinOp ∧ 1 ∈ ℂ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 12 | 1, 11 | mpan2 691 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 13 | 9, 12 | eqtr3id 2778 | . . . 4 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ))) |
| 14 | lnopf 31788 | . . . . . . 7 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 15 | ffvelcdm 7053 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘0ℎ) ∈ ℋ) | |
| 16 | 2, 15 | mpan2 691 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇‘0ℎ) ∈ ℋ) |
| 17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) ∈ ℋ) |
| 18 | ax-hvmulid 30935 | . . . . . 6 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (1 ·ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 20 | 19 | oveq1d 7402 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((1 ·ℎ (𝑇‘0ℎ)) +ℎ (𝑇‘0ℎ)) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
| 21 | 13, 20 | eqtrd 2764 | . . 3 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = ((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ))) |
| 22 | 21 | oveq1d 7402 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ))) |
| 23 | hvsubid 30955 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) | |
| 24 | 17, 23 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → ((𝑇‘0ℎ) −ℎ (𝑇‘0ℎ)) = 0ℎ) |
| 25 | hvpncan 30968 | . . . 4 ⊢ (((𝑇‘0ℎ) ∈ ℋ ∧ (𝑇‘0ℎ) ∈ ℋ) → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) | |
| 26 | 25 | anidms 566 | . . 3 ⊢ ((𝑇‘0ℎ) ∈ ℋ → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 27 | 17, 26 | syl 17 | . 2 ⊢ (𝑇 ∈ LinOp → (((𝑇‘0ℎ) +ℎ (𝑇‘0ℎ)) −ℎ (𝑇‘0ℎ)) = (𝑇‘0ℎ)) |
| 28 | 22, 24, 27 | 3eqtr3rd 2773 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 0ℎc0v 30853 −ℎ cmv 30854 LinOpclo 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hilex 30928 ax-hfvadd 30929 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvdistr2 30938 ax-hvmul0 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-hvsub 30900 df-lnop 31770 |
| This theorem is referenced by: lnopmul 31896 lnop0i 31899 |
| Copyright terms: Public domain | W3C validator |