![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddsubval | Structured version Visualization version GIF version |
Description: Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11496 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 28442 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
3 | 1, 2 | mpan 680 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
4 | hvsubval 28445 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → (𝐴 −ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵)))) | |
5 | 3, 4 | sylan2 586 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵)))) |
6 | hvm1neg 28461 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (--1 ·ℎ 𝐵)) | |
7 | 1, 6 | mpan 680 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (--1 ·ℎ 𝐵)) |
8 | negneg1e1 11500 | . . . . . . 7 ⊢ --1 = 1 | |
9 | 8 | oveq1i 6932 | . . . . . 6 ⊢ (--1 ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
10 | 7, 9 | syl6eq 2830 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (1 ·ℎ 𝐵)) |
11 | ax-hvmulid 28435 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
12 | 10, 11 | eqtrd 2814 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵) |
13 | 12 | adantl 475 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵) |
14 | 13 | oveq2d 6938 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 𝐵)) |
15 | 5, 14 | eqtr2d 2815 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 (class class class)co 6922 ℂcc 10270 1c1 10273 -cneg 10607 ℋchba 28348 +ℎ cva 28349 ·ℎ csm 28350 −ℎ cmv 28354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvmulass 28436 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-hvsub 28400 |
This theorem is referenced by: hvaddeq0 28498 shsel3 28746 |
Copyright terms: Public domain | W3C validator |