Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddsubval | Structured version Visualization version GIF version |
Description: Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12098 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 29384 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
4 | hvsubval 29387 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → (𝐴 −ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵)))) | |
5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵)))) |
6 | hvm1neg 29403 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (--1 ·ℎ 𝐵)) | |
7 | 1, 6 | mpan 687 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (--1 ·ℎ 𝐵)) |
8 | negneg1e1 12102 | . . . . . . 7 ⊢ --1 = 1 | |
9 | 8 | oveq1i 7282 | . . . . . 6 ⊢ (--1 ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
10 | 7, 9 | eqtrdi 2796 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = (1 ·ℎ 𝐵)) |
11 | ax-hvmulid 29377 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
12 | 10, 11 | eqtrd 2780 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵) |
14 | 13 | oveq2d 7288 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 𝐵)) |
15 | 5, 14 | eqtr2d 2781 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 (class class class)co 7272 ℂcc 10880 1c1 10883 -cneg 11217 ℋchba 29290 +ℎ cva 29291 ·ℎ csm 29292 −ℎ cmv 29296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-hfvmul 29376 ax-hvmulid 29377 ax-hvmulass 29378 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-ltxr 11025 df-sub 11218 df-neg 11219 df-hvsub 29342 |
This theorem is referenced by: hvaddeq0 29440 shsel3 29686 |
Copyright terms: Public domain | W3C validator |