HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Visualization version   GIF version

Theorem lnfn0i 30305
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfn0i (𝑇‘0) = 0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 29266 . . . 4 0 ∈ ℋ
2 lnfnl.1 . . . . . 6 𝑇 ∈ LinFn
32lnfnfi 30304 . . . . 5 𝑇: ℋ⟶ℂ
43ffvelrni 6942 . . . 4 (0 ∈ ℋ → (𝑇‘0) ∈ ℂ)
51, 4ax-mp 5 . . 3 (𝑇‘0) ∈ ℂ
65, 5pncan3oi 11167 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0)
7 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
82lnfnli 30303 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
97, 1, 1, 8mp3an 1459 . . . . . 6 (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0))
107, 1hvmulcli 29277 . . . . . . . . 9 (1 · 0) ∈ ℋ
11 ax-hvaddid 29267 . . . . . . . . 9 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
1210, 11ax-mp 5 . . . . . . . 8 ((1 · 0) + 0) = (1 · 0)
13 ax-hvmulid 29269 . . . . . . . . 9 (0 ∈ ℋ → (1 · 0) = 0)
141, 13ax-mp 5 . . . . . . . 8 (1 · 0) = 0
1512, 14eqtri 2766 . . . . . . 7 ((1 · 0) + 0) = 0
1615fveq2i 6759 . . . . . 6 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
179, 16eqtr3i 2768 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = (𝑇‘0)
185mulid2i 10911 . . . . . 6 (1 · (𝑇‘0)) = (𝑇‘0)
1918oveq1i 7265 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0))
2017, 19eqtr3i 2768 . . . 4 (𝑇‘0) = ((𝑇‘0) + (𝑇‘0))
2120oveq1i 7265 . . 3 ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0))
225subidi 11222 . . 3 ((𝑇‘0) − (𝑇‘0)) = 0
2321, 22eqtr3i 2768 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = 0
246, 23eqtr3i 2768 1 (𝑇‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  chba 29182   + cva 29183   · csm 29184  0c0v 29187  LinFnclf 29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-lnfn 30111
This theorem is referenced by:  lnfnmuli  30307  lnfn0  30310  nmbdfnlbi  30312  nmcfnexi  30314  nmcfnlbi  30315  nlelshi  30323
  Copyright terms: Public domain W3C validator