HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Visualization version   GIF version

Theorem lnfn0i 31158
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfn0i (𝑇‘0) = 0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 30119 . . . 4 0 ∈ ℋ
2 lnfnl.1 . . . . . 6 𝑇 ∈ LinFn
32lnfnfi 31157 . . . . 5 𝑇: ℋ⟶ℂ
43ffvelcdmi 7070 . . . 4 (0 ∈ ℋ → (𝑇‘0) ∈ ℂ)
51, 4ax-mp 5 . . 3 (𝑇‘0) ∈ ℂ
65, 5pncan3oi 11458 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0)
7 ax-1cn 11150 . . . . . . 7 1 ∈ ℂ
82lnfnli 31156 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
97, 1, 1, 8mp3an 1461 . . . . . 6 (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0))
107, 1hvmulcli 30130 . . . . . . . . 9 (1 · 0) ∈ ℋ
11 ax-hvaddid 30120 . . . . . . . . 9 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
1210, 11ax-mp 5 . . . . . . . 8 ((1 · 0) + 0) = (1 · 0)
13 ax-hvmulid 30122 . . . . . . . . 9 (0 ∈ ℋ → (1 · 0) = 0)
141, 13ax-mp 5 . . . . . . . 8 (1 · 0) = 0
1512, 14eqtri 2759 . . . . . . 7 ((1 · 0) + 0) = 0
1615fveq2i 6881 . . . . . 6 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
179, 16eqtr3i 2761 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = (𝑇‘0)
185mullidi 11201 . . . . . 6 (1 · (𝑇‘0)) = (𝑇‘0)
1918oveq1i 7403 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0))
2017, 19eqtr3i 2761 . . . 4 (𝑇‘0) = ((𝑇‘0) + (𝑇‘0))
2120oveq1i 7403 . . 3 ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0))
225subidi 11513 . . 3 ((𝑇‘0) − (𝑇‘0)) = 0
2321, 22eqtr3i 2761 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = 0
246, 23eqtr3i 2761 1 (𝑇‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cfv 6532  (class class class)co 7393  cc 11090  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  cmin 11426  chba 30035   + cva 30036   · csm 30037  0c0v 30040  LinFnclf 30070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-hilex 30115  ax-hv0cl 30119  ax-hvaddid 30120  ax-hfvmul 30121  ax-hvmulid 30122
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-ltxr 11235  df-sub 11428  df-lnfn 30964
This theorem is referenced by:  lnfnmuli  31160  lnfn0  31163  nmbdfnlbi  31165  nmcfnexi  31167  nmcfnlbi  31168  nlelshi  31176
  Copyright terms: Public domain W3C validator