HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Visualization version   GIF version

Theorem lnfn0i 31986
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfn0i (𝑇‘0) = 0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 30947 . . . 4 0 ∈ ℋ
2 lnfnl.1 . . . . . 6 𝑇 ∈ LinFn
32lnfnfi 31985 . . . . 5 𝑇: ℋ⟶ℂ
43ffvelcdmi 7017 . . . 4 (0 ∈ ℋ → (𝑇‘0) ∈ ℂ)
51, 4ax-mp 5 . . 3 (𝑇‘0) ∈ ℂ
65, 5pncan3oi 11379 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0)
7 ax-1cn 11067 . . . . . . 7 1 ∈ ℂ
82lnfnli 31984 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
97, 1, 1, 8mp3an 1463 . . . . . 6 (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0))
107, 1hvmulcli 30958 . . . . . . . . 9 (1 · 0) ∈ ℋ
11 ax-hvaddid 30948 . . . . . . . . 9 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
1210, 11ax-mp 5 . . . . . . . 8 ((1 · 0) + 0) = (1 · 0)
13 ax-hvmulid 30950 . . . . . . . . 9 (0 ∈ ℋ → (1 · 0) = 0)
141, 13ax-mp 5 . . . . . . . 8 (1 · 0) = 0
1512, 14eqtri 2752 . . . . . . 7 ((1 · 0) + 0) = 0
1615fveq2i 6825 . . . . . 6 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
179, 16eqtr3i 2754 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = (𝑇‘0)
185mullidi 11120 . . . . . 6 (1 · (𝑇‘0)) = (𝑇‘0)
1918oveq1i 7359 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0))
2017, 19eqtr3i 2754 . . . 4 (𝑇‘0) = ((𝑇‘0) + (𝑇‘0))
2120oveq1i 7359 . . 3 ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0))
225subidi 11435 . . 3 ((𝑇‘0) − (𝑇‘0)) = 0
2321, 22eqtr3i 2754 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = 0
246, 23eqtr3i 2754 1 (𝑇‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  chba 30863   + cva 30864   · csm 30865  0c0v 30868  LinFnclf 30898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-hilex 30943  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-lnfn 31792
This theorem is referenced by:  lnfnmuli  31988  lnfn0  31991  nmbdfnlbi  31993  nmcfnexi  31995  nmcfnlbi  31996  nlelshi  32004
  Copyright terms: Public domain W3C validator