![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfn0i | Structured version Visualization version GIF version |
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfn0i | β’ (πβ0β) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30256 | . . . 4 β’ 0β β β | |
2 | lnfnl.1 | . . . . . 6 β’ π β LinFn | |
3 | 2 | lnfnfi 31294 | . . . . 5 β’ π: ββΆβ |
4 | 3 | ffvelcdmi 7086 | . . . 4 β’ (0β β β β (πβ0β) β β) |
5 | 1, 4 | ax-mp 5 | . . 3 β’ (πβ0β) β β |
6 | 5, 5 | pncan3oi 11476 | . 2 β’ (((πβ0β) + (πβ0β)) β (πβ0β)) = (πβ0β) |
7 | ax-1cn 11168 | . . . . . . 7 β’ 1 β β | |
8 | 2 | lnfnli 31293 | . . . . . . 7 β’ ((1 β β β§ 0β β β β§ 0β β β) β (πβ((1 Β·β 0β) +β 0β)) = ((1 Β· (πβ0β)) + (πβ0β))) |
9 | 7, 1, 1, 8 | mp3an 1462 | . . . . . 6 β’ (πβ((1 Β·β 0β) +β 0β)) = ((1 Β· (πβ0β)) + (πβ0β)) |
10 | 7, 1 | hvmulcli 30267 | . . . . . . . . 9 β’ (1 Β·β 0β) β β |
11 | ax-hvaddid 30257 | . . . . . . . . 9 β’ ((1 Β·β 0β) β β β ((1 Β·β 0β) +β 0β) = (1 Β·β 0β)) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 β’ ((1 Β·β 0β) +β 0β) = (1 Β·β 0β) |
13 | ax-hvmulid 30259 | . . . . . . . . 9 β’ (0β β β β (1 Β·β 0β) = 0β) | |
14 | 1, 13 | ax-mp 5 | . . . . . . . 8 β’ (1 Β·β 0β) = 0β |
15 | 12, 14 | eqtri 2761 | . . . . . . 7 β’ ((1 Β·β 0β) +β 0β) = 0β |
16 | 15 | fveq2i 6895 | . . . . . 6 β’ (πβ((1 Β·β 0β) +β 0β)) = (πβ0β) |
17 | 9, 16 | eqtr3i 2763 | . . . . 5 β’ ((1 Β· (πβ0β)) + (πβ0β)) = (πβ0β) |
18 | 5 | mullidi 11219 | . . . . . 6 β’ (1 Β· (πβ0β)) = (πβ0β) |
19 | 18 | oveq1i 7419 | . . . . 5 β’ ((1 Β· (πβ0β)) + (πβ0β)) = ((πβ0β) + (πβ0β)) |
20 | 17, 19 | eqtr3i 2763 | . . . 4 β’ (πβ0β) = ((πβ0β) + (πβ0β)) |
21 | 20 | oveq1i 7419 | . . 3 β’ ((πβ0β) β (πβ0β)) = (((πβ0β) + (πβ0β)) β (πβ0β)) |
22 | 5 | subidi 11531 | . . 3 β’ ((πβ0β) β (πβ0β)) = 0 |
23 | 21, 22 | eqtr3i 2763 | . 2 β’ (((πβ0β) + (πβ0β)) β (πβ0β)) = 0 |
24 | 6, 23 | eqtr3i 2763 | 1 β’ (πβ0β) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 βcc 11108 0cc0 11110 1c1 11111 + caddc 11113 Β· cmul 11115 β cmin 11444 βchba 30172 +β cva 30173 Β·β csm 30174 0βc0v 30177 LinFnclf 30207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-hilex 30252 ax-hv0cl 30256 ax-hvaddid 30257 ax-hfvmul 30258 ax-hvmulid 30259 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-lnfn 31101 |
This theorem is referenced by: lnfnmuli 31297 lnfn0 31300 nmbdfnlbi 31302 nmcfnexi 31304 nmcfnlbi 31305 nlelshi 31313 |
Copyright terms: Public domain | W3C validator |