HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Visualization version   GIF version

Theorem lnfn0i 32061
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfn0i (𝑇‘0) = 0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 31022 . . . 4 0 ∈ ℋ
2 lnfnl.1 . . . . . 6 𝑇 ∈ LinFn
32lnfnfi 32060 . . . . 5 𝑇: ℋ⟶ℂ
43ffvelcdmi 7103 . . . 4 (0 ∈ ℋ → (𝑇‘0) ∈ ℂ)
51, 4ax-mp 5 . . 3 (𝑇‘0) ∈ ℂ
65, 5pncan3oi 11524 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0)
7 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
82lnfnli 32059 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
97, 1, 1, 8mp3an 1463 . . . . . 6 (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0))
107, 1hvmulcli 31033 . . . . . . . . 9 (1 · 0) ∈ ℋ
11 ax-hvaddid 31023 . . . . . . . . 9 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
1210, 11ax-mp 5 . . . . . . . 8 ((1 · 0) + 0) = (1 · 0)
13 ax-hvmulid 31025 . . . . . . . . 9 (0 ∈ ℋ → (1 · 0) = 0)
141, 13ax-mp 5 . . . . . . . 8 (1 · 0) = 0
1512, 14eqtri 2765 . . . . . . 7 ((1 · 0) + 0) = 0
1615fveq2i 6909 . . . . . 6 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
179, 16eqtr3i 2767 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = (𝑇‘0)
185mullidi 11266 . . . . . 6 (1 · (𝑇‘0)) = (𝑇‘0)
1918oveq1i 7441 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0))
2017, 19eqtr3i 2767 . . . 4 (𝑇‘0) = ((𝑇‘0) + (𝑇‘0))
2120oveq1i 7441 . . 3 ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0))
225subidi 11580 . . 3 ((𝑇‘0) − (𝑇‘0)) = 0
2321, 22eqtr3i 2767 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = 0
246, 23eqtr3i 2767 1 (𝑇‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  chba 30938   + cva 30939   · csm 30940  0c0v 30943  LinFnclf 30973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-lnfn 31867
This theorem is referenced by:  lnfnmuli  32063  lnfn0  32066  nmbdfnlbi  32068  nmcfnexi  32070  nmcfnlbi  32071  nlelshi  32079
  Copyright terms: Public domain W3C validator