| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfn0i | Structured version Visualization version GIF version | ||
| Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfn0i | ⊢ (𝑇‘0ℎ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30983 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 2 | lnfnl.1 | . . . . . 6 ⊢ 𝑇 ∈ LinFn | |
| 3 | 2 | lnfnfi 32021 | . . . . 5 ⊢ 𝑇: ℋ⟶ℂ |
| 4 | 3 | ffvelcdmi 7016 | . . . 4 ⊢ (0ℎ ∈ ℋ → (𝑇‘0ℎ) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑇‘0ℎ) ∈ ℂ |
| 6 | 5, 5 | pncan3oi 11376 | . 2 ⊢ (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
| 7 | ax-1cn 11064 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 8 | 2 | lnfnli 32020 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ))) |
| 9 | 7, 1, 1, 8 | mp3an 1463 | . . . . . 6 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) |
| 10 | 7, 1 | hvmulcli 30994 | . . . . . . . . 9 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
| 11 | ax-hvaddid 30984 | . . . . . . . . 9 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
| 13 | ax-hvmulid 30986 | . . . . . . . . 9 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
| 14 | 1, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
| 15 | 12, 14 | eqtri 2754 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
| 16 | 15 | fveq2i 6825 | . . . . . 6 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
| 17 | 9, 16 | eqtr3i 2756 | . . . . 5 ⊢ ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
| 18 | 5 | mullidi 11117 | . . . . . 6 ⊢ (1 · (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
| 19 | 18 | oveq1i 7356 | . . . . 5 ⊢ ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) = ((𝑇‘0ℎ) + (𝑇‘0ℎ)) |
| 20 | 17, 19 | eqtr3i 2756 | . . . 4 ⊢ (𝑇‘0ℎ) = ((𝑇‘0ℎ) + (𝑇‘0ℎ)) |
| 21 | 20 | oveq1i 7356 | . . 3 ⊢ ((𝑇‘0ℎ) − (𝑇‘0ℎ)) = (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) |
| 22 | 5 | subidi 11432 | . . 3 ⊢ ((𝑇‘0ℎ) − (𝑇‘0ℎ)) = 0 |
| 23 | 21, 22 | eqtr3i 2756 | . 2 ⊢ (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) = 0 |
| 24 | 6, 23 | eqtr3i 2756 | 1 ⊢ (𝑇‘0ℎ) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 0ℎc0v 30904 LinFnclf 30934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hilex 30979 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-lnfn 31828 |
| This theorem is referenced by: lnfnmuli 32024 lnfn0 32027 nmbdfnlbi 32029 nmcfnexi 32031 nmcfnlbi 32032 nlelshi 32040 |
| Copyright terms: Public domain | W3C validator |