HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Visualization version   GIF version

Theorem lnfn0i 29821
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfn0i (𝑇‘0) = 0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 28782 . . . 4 0 ∈ ℋ
2 lnfnl.1 . . . . . 6 𝑇 ∈ LinFn
32lnfnfi 29820 . . . . 5 𝑇: ℋ⟶ℂ
43ffvelrni 6838 . . . 4 (0 ∈ ℋ → (𝑇‘0) ∈ ℂ)
51, 4ax-mp 5 . . 3 (𝑇‘0) ∈ ℂ
65, 5pncan3oi 10894 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = (𝑇‘0)
7 ax-1cn 10587 . . . . . . 7 1 ∈ ℂ
82lnfnli 29819 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0)))
97, 1, 1, 8mp3an 1458 . . . . . 6 (𝑇‘((1 · 0) + 0)) = ((1 · (𝑇‘0)) + (𝑇‘0))
107, 1hvmulcli 28793 . . . . . . . . 9 (1 · 0) ∈ ℋ
11 ax-hvaddid 28783 . . . . . . . . 9 ((1 · 0) ∈ ℋ → ((1 · 0) + 0) = (1 · 0))
1210, 11ax-mp 5 . . . . . . . 8 ((1 · 0) + 0) = (1 · 0)
13 ax-hvmulid 28785 . . . . . . . . 9 (0 ∈ ℋ → (1 · 0) = 0)
141, 13ax-mp 5 . . . . . . . 8 (1 · 0) = 0
1512, 14eqtri 2847 . . . . . . 7 ((1 · 0) + 0) = 0
1615fveq2i 6661 . . . . . 6 (𝑇‘((1 · 0) + 0)) = (𝑇‘0)
179, 16eqtr3i 2849 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = (𝑇‘0)
185mulid2i 10638 . . . . . 6 (1 · (𝑇‘0)) = (𝑇‘0)
1918oveq1i 7155 . . . . 5 ((1 · (𝑇‘0)) + (𝑇‘0)) = ((𝑇‘0) + (𝑇‘0))
2017, 19eqtr3i 2849 . . . 4 (𝑇‘0) = ((𝑇‘0) + (𝑇‘0))
2120oveq1i 7155 . . 3 ((𝑇‘0) − (𝑇‘0)) = (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0))
225subidi 10949 . . 3 ((𝑇‘0) − (𝑇‘0)) = 0
2321, 22eqtr3i 2849 . 2 (((𝑇‘0) + (𝑇‘0)) − (𝑇‘0)) = 0
246, 23eqtr3i 2849 1 (𝑇‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7145  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  chba 28698   + cva 28699   · csm 28700  0c0v 28703  LinFnclf 28733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-hilex 28778  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-lnfn 29627
This theorem is referenced by:  lnfnmuli  29823  lnfn0  29826  nmbdfnlbi  29828  nmcfnexi  29830  nmcfnlbi  29831  nlelshi  29839
  Copyright terms: Public domain W3C validator