![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfn0i | Structured version Visualization version GIF version |
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfn0i | ⊢ (𝑇‘0ℎ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28415 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
2 | lnfnl.1 | . . . . . 6 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnfi 29455 | . . . . 5 ⊢ 𝑇: ℋ⟶ℂ |
4 | 3 | ffvelrni 6607 | . . . 4 ⊢ (0ℎ ∈ ℋ → (𝑇‘0ℎ) ∈ ℂ) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑇‘0ℎ) ∈ ℂ |
6 | 5, 5 | pncan3oi 10618 | . 2 ⊢ (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
7 | ax-1cn 10310 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | 2 | lnfnli 29454 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ))) |
9 | 7, 1, 1, 8 | mp3an 1591 | . . . . . 6 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) |
10 | 7, 1 | hvmulcli 28426 | . . . . . . . . 9 ⊢ (1 ·ℎ 0ℎ) ∈ ℋ |
11 | ax-hvaddid 28416 | . . . . . . . . 9 ⊢ ((1 ·ℎ 0ℎ) ∈ ℋ → ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ)) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = (1 ·ℎ 0ℎ) |
13 | ax-hvmulid 28418 | . . . . . . . . 9 ⊢ (0ℎ ∈ ℋ → (1 ·ℎ 0ℎ) = 0ℎ) | |
14 | 1, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (1 ·ℎ 0ℎ) = 0ℎ |
15 | 12, 14 | eqtri 2849 | . . . . . . 7 ⊢ ((1 ·ℎ 0ℎ) +ℎ 0ℎ) = 0ℎ |
16 | 15 | fveq2i 6436 | . . . . . 6 ⊢ (𝑇‘((1 ·ℎ 0ℎ) +ℎ 0ℎ)) = (𝑇‘0ℎ) |
17 | 9, 16 | eqtr3i 2851 | . . . . 5 ⊢ ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
18 | 5 | mulid2i 10362 | . . . . . 6 ⊢ (1 · (𝑇‘0ℎ)) = (𝑇‘0ℎ) |
19 | 18 | oveq1i 6915 | . . . . 5 ⊢ ((1 · (𝑇‘0ℎ)) + (𝑇‘0ℎ)) = ((𝑇‘0ℎ) + (𝑇‘0ℎ)) |
20 | 17, 19 | eqtr3i 2851 | . . . 4 ⊢ (𝑇‘0ℎ) = ((𝑇‘0ℎ) + (𝑇‘0ℎ)) |
21 | 20 | oveq1i 6915 | . . 3 ⊢ ((𝑇‘0ℎ) − (𝑇‘0ℎ)) = (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) |
22 | 5 | subidi 10673 | . . 3 ⊢ ((𝑇‘0ℎ) − (𝑇‘0ℎ)) = 0 |
23 | 21, 22 | eqtr3i 2851 | . 2 ⊢ (((𝑇‘0ℎ) + (𝑇‘0ℎ)) − (𝑇‘0ℎ)) = 0 |
24 | 6, 23 | eqtr3i 2851 | 1 ⊢ (𝑇‘0ℎ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 0cc0 10252 1c1 10253 + caddc 10255 · cmul 10257 − cmin 10585 ℋchba 28331 +ℎ cva 28332 ·ℎ csm 28333 0ℎc0v 28336 LinFnclf 28366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-hilex 28411 ax-hv0cl 28415 ax-hvaddid 28416 ax-hfvmul 28417 ax-hvmulid 28418 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-ltxr 10396 df-sub 10587 df-lnfn 29262 |
This theorem is referenced by: lnfnmuli 29458 lnfn0 29461 nmbdfnlbi 29463 nmcfnexi 29465 nmcfnlbi 29466 nlelshi 29474 |
Copyright terms: Public domain | W3C validator |