![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-rrecex | Structured version Visualization version GIF version |
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex 11160. (Contributed by Eric Schmidt, 11-Apr-2007.) |
Ref | Expression |
---|---|
ax-rrecex | โข ((๐ด โ โ โง ๐ด โ 0) โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class ๐ด | |
2 | cr 11111 | . . . 4 class โ | |
3 | 1, 2 | wcel 2106 | . . 3 wff ๐ด โ โ |
4 | cc0 11112 | . . . 4 class 0 | |
5 | 1, 4 | wne 2940 | . . 3 wff ๐ด โ 0 |
6 | 3, 5 | wa 396 | . 2 wff (๐ด โ โ โง ๐ด โ 0) |
7 | vx | . . . . . 6 setvar ๐ฅ | |
8 | 7 | cv 1540 | . . . . 5 class ๐ฅ |
9 | cmul 11117 | . . . . 5 class ยท | |
10 | 1, 8, 9 | co 7411 | . . . 4 class (๐ด ยท ๐ฅ) |
11 | c1 11113 | . . . 4 class 1 | |
12 | 10, 11 | wceq 1541 | . . 3 wff (๐ด ยท ๐ฅ) = 1 |
13 | 12, 7, 2 | wrex 3070 | . 2 wff โ๐ฅ โ โ (๐ด ยท ๐ฅ) = 1 |
14 | 6, 13 | wi 4 | 1 wff ((๐ด โ โ โง ๐ด โ 0) โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) = 1) |
Colors of variables: wff setvar class |
This axiom is referenced by: 1re 11216 00id 11391 mul02lem1 11392 addrid 11396 recex 11848 rereccl 11934 xrecex 32124 remulcan2d 41259 remul02 41360 remul01 41362 remulinvcom 41387 remullid 41388 remulcand 41393 sn-0tie0 41394 itrere 41421 retire 41422 |
Copyright terms: Public domain | W3C validator |