MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00id Structured version   Visualization version   GIF version

Theorem 00id 11309
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11136 . 2 0 ∈ ℝ
2 ax-rnegex 11099 . 2 (0 ∈ ℝ → ∃𝑐 ∈ ℝ (0 + 𝑐) = 0)
3 oveq2 7361 . . . . . . 7 (𝑐 = 0 → (0 + 𝑐) = (0 + 0))
43eqeq1d 2731 . . . . . 6 (𝑐 = 0 → ((0 + 𝑐) = 0 ↔ (0 + 0) = 0))
54biimpd 229 . . . . 5 (𝑐 = 0 → ((0 + 𝑐) = 0 → (0 + 0) = 0))
65adantld 490 . . . 4 (𝑐 = 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
7 ax-rrecex 11100 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
87adantlr 715 . . . . . 6 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
9 simplll 774 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℝ)
109recnd 11162 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℂ)
11 simprl 770 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1211recnd 11162 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
13 0cn 11126 . . . . . . . . . . 11 0 ∈ ℂ
14 mulass 11116 . . . . . . . . . . 11 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1513, 14mp3an3 1452 . . . . . . . . . 10 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1610, 12, 15syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
17 oveq1 7360 . . . . . . . . . . 11 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = (1 · 0))
1813mullidi 11139 . . . . . . . . . . 11 (1 · 0) = 0
1917, 18eqtrdi 2780 . . . . . . . . . 10 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = 0)
2019ad2antll 729 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = 0)
2116, 20eqtr3d 2766 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) = 0)
2221oveq1d 7368 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = (0 + 0))
23 simpllr 775 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 𝑐) = 0)
2423oveq1d 7368 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = (0 · (𝑦 · 0)))
25 remulcl 11113 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 · 0) ∈ ℝ)
261, 25mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 · 0) ∈ ℝ)
2726ad2antrl 728 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℝ)
2827recnd 11162 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℂ)
29 adddir 11125 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ (𝑦 · 0) ∈ ℂ) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3013, 10, 28, 29mp3an2i 1468 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3124, 30eqtr3d 2766 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3231oveq1d 7368 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + 0) = (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0))
33 remulcl 11113 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (0 · (𝑦 · 0)) ∈ ℝ)
341, 26, 33sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (0 · (𝑦 · 0)) ∈ ℝ)
3534ad2antrl 728 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℝ)
3635recnd 11162 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℂ)
37 remulcl 11113 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
389, 27, 37syl2anc 584 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
3938recnd 11162 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℂ)
40 addass 11115 . . . . . . . . . . 11 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ ∧ 0 ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4113, 40mp3an3 1452 . . . . . . . . . 10 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4236, 39, 41syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4332, 42eqtr2d 2765 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0))
4426, 37sylan2 593 . . . . . . . . . . 11 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
45 readdcl 11111 . . . . . . . . . . 11 (((𝑐 · (𝑦 · 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
4644, 1, 45sylancl 586 . . . . . . . . . 10 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
479, 11, 46syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
48 readdcan 11308 . . . . . . . . . 10 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
491, 48mp3an2 1451 . . . . . . . . 9 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5047, 35, 49syl2anc 584 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5143, 50mpbid 232 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = 0)
5222, 51eqtr3d 2766 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 0) = 0)
538, 52rexlimddv 3136 . . . . 5 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → (0 + 0) = 0)
5453expcom 413 . . . 4 (𝑐 ≠ 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
556, 54pm2.61ine 3008 . . 3 ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0)
5655rexlimiva 3122 . 2 (∃𝑐 ∈ ℝ (0 + 𝑐) = 0 → (0 + 0) = 0)
571, 2, 56mp2b 10 1 (0 + 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173
This theorem is referenced by:  mul02lem1  11310  mul02lem2  11311  addrid  11314  addlid  11317  addgt0  11624  addgegt0  11625  addgtge0  11626  addge0  11627  add20  11650  recextlem2  11769  crne0  12139  decaddm10  12668  10p10e20  12704  ser0  13979  faclbnd4lem3  14220  bcpasc  14246  relexpaddg  14978  fsumadd  15665  fsumrelem  15732  arisum  15785  fsumcube  15985  sadcaddlem  16386  sadcadd  16387  sadadd2  16389  bezout  16472  bezoutr1  16498  nnnn0modprm0  16736  pcaddlem  16818  4sqlem19  16893  139prm  17053  163prm  17054  317prm  17055  631prm  17056  1259lem1  17060  1259lem2  17061  1259lem4  17063  2503lem1  17066  2503lem2  17067  2503lem3  17068  4001lem1  17070  4001lem2  17071  4001lem3  17072  4001lem4  17073  sylow1lem1  19495  cnfld0  21317  pzriprnglem4  21409  psrbagaddcl  21849  mplcoe3  21961  reparphti  24912  reparphtiOLD  24913  cphpyth  25132  itg1addlem4  25616  ibladdlem  25737  itgaddlem1  25740  iblabslem  25745  iblabs  25746  coeaddlem  26170  dcubic  26772  log2ublem3  26874  log2ub  26875  chtublem  27138  logfacrlim  27151  2sqnn  27366  dchrisumlem1  27416  vtxdg0e  29438  1kp2ke3k  30408  dip0r  30679  pythi  30812  normpythi  31104  ocsh  31245  0lnfn  31947  lnopeq0i  31969  nlelshi  32022  unierri  32066  cos9thpiminply  33754  probun  34386  hgt750lem2  34619  poimirlem3  37602  poimirlem4  37603  ismblfin  37640  itg2addnc  37653  ibladdnclem  37655  itgaddnclem1  37657  itgaddnclem2  37658  iblabsnclem  37662  iblabsnc  37663  iblmulc2nc  37664  ftc1anclem8  37679  ftc1anc  37680  3lexlogpow5ineq1  42027  dffltz  42607  relexpaddss  43691  stoweidlem44  46026  fourierdlem42  46131  fourierdlem103  46191  fourierdlem104  46192  sqwvfoura  46210  sqwvfourb  46211  fmtno5lem4  47541  139prmALT  47581  line2ylem  48737
  Copyright terms: Public domain W3C validator