MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00id Structured version   Visualization version   GIF version

Theorem 00id 10804
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10632 . 2 0 ∈ ℝ
2 ax-rnegex 10597 . 2 (0 ∈ ℝ → ∃𝑐 ∈ ℝ (0 + 𝑐) = 0)
3 oveq2 7143 . . . . . . 7 (𝑐 = 0 → (0 + 𝑐) = (0 + 0))
43eqeq1d 2800 . . . . . 6 (𝑐 = 0 → ((0 + 𝑐) = 0 ↔ (0 + 0) = 0))
54biimpd 232 . . . . 5 (𝑐 = 0 → ((0 + 𝑐) = 0 → (0 + 0) = 0))
65adantld 494 . . . 4 (𝑐 = 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
7 ax-rrecex 10598 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
87adantlr 714 . . . . . 6 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
9 simplll 774 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℝ)
109recnd 10658 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℂ)
11 simprl 770 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1211recnd 10658 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
13 0cn 10622 . . . . . . . . . . 11 0 ∈ ℂ
14 mulass 10614 . . . . . . . . . . 11 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1513, 14mp3an3 1447 . . . . . . . . . 10 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1610, 12, 15syl2anc 587 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
17 oveq1 7142 . . . . . . . . . . 11 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = (1 · 0))
1813mulid2i 10635 . . . . . . . . . . 11 (1 · 0) = 0
1917, 18eqtrdi 2849 . . . . . . . . . 10 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = 0)
2019ad2antll 728 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = 0)
2116, 20eqtr3d 2835 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) = 0)
2221oveq1d 7150 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = (0 + 0))
23 simpllr 775 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 𝑐) = 0)
2423oveq1d 7150 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = (0 · (𝑦 · 0)))
25 remulcl 10611 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 · 0) ∈ ℝ)
261, 25mpan2 690 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 · 0) ∈ ℝ)
2726ad2antrl 727 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℝ)
2827recnd 10658 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℂ)
29 adddir 10621 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ (𝑦 · 0) ∈ ℂ) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3013, 10, 28, 29mp3an2i 1463 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3124, 30eqtr3d 2835 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3231oveq1d 7150 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + 0) = (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0))
33 remulcl 10611 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (0 · (𝑦 · 0)) ∈ ℝ)
341, 26, 33sylancr 590 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (0 · (𝑦 · 0)) ∈ ℝ)
3534ad2antrl 727 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℝ)
3635recnd 10658 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℂ)
37 remulcl 10611 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
389, 27, 37syl2anc 587 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
3938recnd 10658 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℂ)
40 addass 10613 . . . . . . . . . . 11 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ ∧ 0 ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4113, 40mp3an3 1447 . . . . . . . . . 10 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4236, 39, 41syl2anc 587 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4332, 42eqtr2d 2834 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0))
4426, 37sylan2 595 . . . . . . . . . . 11 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
45 readdcl 10609 . . . . . . . . . . 11 (((𝑐 · (𝑦 · 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
4644, 1, 45sylancl 589 . . . . . . . . . 10 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
479, 11, 46syl2anc 587 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
48 readdcan 10803 . . . . . . . . . 10 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
491, 48mp3an2 1446 . . . . . . . . 9 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5047, 35, 49syl2anc 587 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5143, 50mpbid 235 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = 0)
5222, 51eqtr3d 2835 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 0) = 0)
538, 52rexlimddv 3250 . . . . 5 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → (0 + 0) = 0)
5453expcom 417 . . . 4 (𝑐 ≠ 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
556, 54pm2.61ine 3070 . . 3 ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0)
5655rexlimiva 3240 . 2 (∃𝑐 ∈ ℝ (0 + 𝑐) = 0 → (0 + 0) = 0)
571, 2, 56mp2b 10 1 (0 + 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669
This theorem is referenced by:  mul02lem1  10805  mul02lem2  10806  addid1  10809  addid2  10812  addgt0  11115  addgegt0  11116  addgtge0  11117  addge0  11118  add20  11141  recextlem2  11260  crne0  11618  decaddm10  12145  10p10e20  12181  ser0  13418  faclbnd4lem3  13651  bcpasc  13677  relexpaddg  14404  fsumadd  15088  fsumrelem  15154  arisum  15207  fsumcube  15406  sadcaddlem  15796  sadcadd  15797  sadadd2  15799  bezout  15881  bezoutr1  15903  nnnn0modprm0  16133  pcaddlem  16214  4sqlem19  16289  139prm  16449  163prm  16450  317prm  16451  631prm  16452  1259lem1  16456  1259lem2  16457  1259lem4  16459  2503lem1  16462  2503lem2  16463  2503lem3  16464  4001lem1  16466  4001lem2  16467  4001lem3  16468  4001lem4  16469  sylow1lem1  18715  cnfld0  20115  psrbagaddcl  20608  mplcoe3  20706  reparphti  23602  itg1addlem4  24303  ibladdlem  24423  itgaddlem1  24426  iblabslem  24431  iblabs  24432  coeaddlem  24846  dcubic  25432  log2ublem3  25534  log2ub  25535  chtublem  25795  logfacrlim  25808  2sqnn  26023  dchrisumlem1  26073  vtxdg0e  27264  1kp2ke3k  28231  dip0r  28500  pythi  28633  normpythi  28925  ocsh  29066  0lnfn  29768  lnopeq0i  29790  nlelshi  29843  unierri  29887  probun  31787  hgt750lem2  32033  poimirlem3  35060  poimirlem4  35061  ismblfin  35098  itg2addnc  35111  ibladdnclem  35113  itgaddnclem1  35115  itgaddnclem2  35116  iblabsnclem  35120  iblabsnc  35121  iblmulc2nc  35122  ftc1anclem8  35137  ftc1anc  35138  dffltz  39615  relexpaddss  40419  stoweidlem44  42686  fourierdlem42  42791  fourierdlem103  42851  fourierdlem104  42852  sqwvfoura  42870  sqwvfourb  42871  fmtno5lem4  44073  139prmALT  44113  line2ylem  45165
  Copyright terms: Public domain W3C validator