MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00id Structured version   Visualization version   GIF version

Theorem 00id 10467
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10297 . 2 0 ∈ ℝ
2 ax-rnegex 10262 . 2 (0 ∈ ℝ → ∃𝑐 ∈ ℝ (0 + 𝑐) = 0)
3 oveq2 6852 . . . . . . 7 (𝑐 = 0 → (0 + 𝑐) = (0 + 0))
43eqeq1d 2767 . . . . . 6 (𝑐 = 0 → ((0 + 𝑐) = 0 ↔ (0 + 0) = 0))
54biimpd 220 . . . . 5 (𝑐 = 0 → ((0 + 𝑐) = 0 → (0 + 0) = 0))
65adantld 484 . . . 4 (𝑐 = 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
7 ax-rrecex 10263 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
87adantlr 706 . . . . . 6 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
9 simplll 791 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℝ)
109recnd 10324 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℂ)
11 simprl 787 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1211recnd 10324 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
13 0cn 10287 . . . . . . . . . . 11 0 ∈ ℂ
14 mulass 10279 . . . . . . . . . . 11 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1513, 14mp3an3 1574 . . . . . . . . . 10 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1610, 12, 15syl2anc 579 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
17 oveq1 6851 . . . . . . . . . . 11 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = (1 · 0))
1813mulid2i 10301 . . . . . . . . . . 11 (1 · 0) = 0
1917, 18syl6eq 2815 . . . . . . . . . 10 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = 0)
2019ad2antll 720 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = 0)
2116, 20eqtr3d 2801 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) = 0)
2221oveq1d 6859 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = (0 + 0))
23 simpllr 793 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 𝑐) = 0)
2423oveq1d 6859 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = (0 · (𝑦 · 0)))
25 remulcl 10276 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 · 0) ∈ ℝ)
261, 25mpan2 682 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 · 0) ∈ ℝ)
2726ad2antrl 719 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℝ)
2827recnd 10324 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℂ)
29 adddir 10286 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ (𝑦 · 0) ∈ ℂ) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3013, 29mp3an1 1572 . . . . . . . . . . . 12 ((𝑐 ∈ ℂ ∧ (𝑦 · 0) ∈ ℂ) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3110, 28, 30syl2anc 579 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3224, 31eqtr3d 2801 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3332oveq1d 6859 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + 0) = (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0))
34 remulcl 10276 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (0 · (𝑦 · 0)) ∈ ℝ)
351, 26, 34sylancr 581 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (0 · (𝑦 · 0)) ∈ ℝ)
3635ad2antrl 719 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℝ)
3736recnd 10324 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℂ)
38 remulcl 10276 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
399, 27, 38syl2anc 579 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
4039recnd 10324 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℂ)
41 addass 10278 . . . . . . . . . . 11 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ ∧ 0 ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4213, 41mp3an3 1574 . . . . . . . . . 10 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4337, 40, 42syl2anc 579 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4433, 43eqtr2d 2800 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0))
4526, 38sylan2 586 . . . . . . . . . . 11 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
46 readdcl 10274 . . . . . . . . . . 11 (((𝑐 · (𝑦 · 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
4745, 1, 46sylancl 580 . . . . . . . . . 10 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
489, 11, 47syl2anc 579 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
49 readdcan 10466 . . . . . . . . . 10 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
501, 49mp3an2 1573 . . . . . . . . 9 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5148, 36, 50syl2anc 579 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5244, 51mpbid 223 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = 0)
5322, 52eqtr3d 2801 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 0) = 0)
548, 53rexlimddv 3182 . . . . 5 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → (0 + 0) = 0)
5554expcom 402 . . . 4 (𝑐 ≠ 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
566, 55pm2.61ine 3020 . . 3 ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0)
5756rexlimiva 3175 . 2 (∃𝑐 ∈ ℝ (0 + 𝑐) = 0 → (0 + 0) = 0)
581, 2, 57mp2b 10 1 (0 + 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6847  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-ltxr 10335
This theorem is referenced by:  mul02lem1  10468  mul02lem2  10469  addid1  10472  addid2  10475  addgt0  10770  addgegt0  10771  addgtge0  10772  addge0  10773  add20  10796  recextlem2  10914  crne0  11269  decaddm10  11803  10p10e20  11839  ser0  13063  faclbnd4lem3  13289  bcpasc  13315  relexpaddg  14081  fsumadd  14758  fsumrelem  14826  arisum  14879  fsumcube  15076  sadcaddlem  15463  sadcadd  15464  sadadd2  15466  bezout  15544  bezoutr1  15566  nnnn0modprm0  15793  pcaddlem  15874  4sqlem19  15949  139prm  16107  163prm  16108  317prm  16109  631prm  16110  1259lem1  16114  1259lem2  16115  1259lem4  16117  2503lem1  16120  2503lem2  16121  2503lem3  16122  4001lem1  16124  4001lem2  16125  4001lem3  16126  4001lem4  16127  sylow1lem1  18280  psrbagaddcl  19647  mplcoe3  19743  cnfld0  20046  reparphti  23078  itg1addlem4  23760  ibladdlem  23880  itgaddlem1  23883  iblabslem  23888  iblabs  23889  coeaddlem  24299  dcubic  24867  log2ublem3  24969  log2ub  24970  chtublem  25230  logfacrlim  25243  dchrisumlem1  25472  chpdifbndlem2  25537  vtxdg0e  26664  1kp2ke3k  27765  dip0r  28031  pythi  28164  normpythi  28458  ocsh  28601  0lnfn  29303  lnopeq0i  29325  nlelshi  29378  unierri  29422  probun  30932  hgt750lem2  31184  poimirlem3  33839  poimirlem4  33840  ismblfin  33877  itg2addnc  33890  ibladdnclem  33892  itgaddnclem1  33894  itgaddnclem2  33895  iblabsnclem  33899  iblabsnc  33900  iblmulc2nc  33901  ftc1anclem8  33918  ftc1anc  33919  relexpaddss  38688  stoweidlem44  40901  fourierdlem42  41006  fourierdlem103  41066  fourierdlem104  41067  sqwvfoura  41085  sqwvfourb  41086  fmtno5lem4  42147  139prmALT  42190
  Copyright terms: Public domain W3C validator