MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00id Structured version   Visualization version   GIF version

Theorem 00id 11295
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11121 . 2 0 ∈ ℝ
2 ax-rnegex 11084 . 2 (0 ∈ ℝ → ∃𝑐 ∈ ℝ (0 + 𝑐) = 0)
3 oveq2 7360 . . . . . . 7 (𝑐 = 0 → (0 + 𝑐) = (0 + 0))
43eqeq1d 2735 . . . . . 6 (𝑐 = 0 → ((0 + 𝑐) = 0 ↔ (0 + 0) = 0))
54biimpd 229 . . . . 5 (𝑐 = 0 → ((0 + 𝑐) = 0 → (0 + 0) = 0))
65adantld 490 . . . 4 (𝑐 = 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
7 ax-rrecex 11085 . . . . . . 7 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
87adantlr 715 . . . . . 6 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → ∃𝑦 ∈ ℝ (𝑐 · 𝑦) = 1)
9 simplll 774 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℝ)
109recnd 11147 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑐 ∈ ℂ)
11 simprl 770 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1211recnd 11147 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
13 0cn 11111 . . . . . . . . . . 11 0 ∈ ℂ
14 mulass 11101 . . . . . . . . . . 11 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1513, 14mp3an3 1452 . . . . . . . . . 10 ((𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
1610, 12, 15syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = (𝑐 · (𝑦 · 0)))
17 oveq1 7359 . . . . . . . . . . 11 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = (1 · 0))
1813mullidi 11124 . . . . . . . . . . 11 (1 · 0) = 0
1917, 18eqtrdi 2784 . . . . . . . . . 10 ((𝑐 · 𝑦) = 1 → ((𝑐 · 𝑦) · 0) = 0)
2019ad2antll 729 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · 𝑦) · 0) = 0)
2116, 20eqtr3d 2770 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) = 0)
2221oveq1d 7367 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = (0 + 0))
23 simpllr 775 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 𝑐) = 0)
2423oveq1d 7367 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = (0 · (𝑦 · 0)))
25 remulcl 11098 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 · 0) ∈ ℝ)
261, 25mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 · 0) ∈ ℝ)
2726ad2antrl 728 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℝ)
2827recnd 11147 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑦 · 0) ∈ ℂ)
29 adddir 11110 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ (𝑦 · 0) ∈ ℂ) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3013, 10, 28, 29mp3an2i 1468 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 + 𝑐) · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3124, 30eqtr3d 2770 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) = ((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))))
3231oveq1d 7367 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + 0) = (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0))
33 remulcl 11098 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (0 · (𝑦 · 0)) ∈ ℝ)
341, 26, 33sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (0 · (𝑦 · 0)) ∈ ℝ)
3534ad2antrl 728 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℝ)
3635recnd 11147 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 · (𝑦 · 0)) ∈ ℂ)
37 remulcl 11098 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ (𝑦 · 0) ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
389, 27, 37syl2anc 584 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
3938recnd 11147 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (𝑐 · (𝑦 · 0)) ∈ ℂ)
40 addass 11100 . . . . . . . . . . 11 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ ∧ 0 ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4113, 40mp3an3 1452 . . . . . . . . . 10 (((0 · (𝑦 · 0)) ∈ ℂ ∧ (𝑐 · (𝑦 · 0)) ∈ ℂ) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4236, 39, 41syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + (𝑐 · (𝑦 · 0))) + 0) = ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)))
4332, 42eqtr2d 2769 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0))
4426, 37sylan2 593 . . . . . . . . . . 11 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑐 · (𝑦 · 0)) ∈ ℝ)
45 readdcl 11096 . . . . . . . . . . 11 (((𝑐 · (𝑦 · 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
4644, 1, 45sylancl 586 . . . . . . . . . 10 ((𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
479, 11, 46syl2anc 584 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ)
48 readdcan 11294 . . . . . . . . . 10 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
491, 48mp3an2 1451 . . . . . . . . 9 ((((𝑐 · (𝑦 · 0)) + 0) ∈ ℝ ∧ (0 · (𝑦 · 0)) ∈ ℝ) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5047, 35, 49syl2anc 584 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (((0 · (𝑦 · 0)) + ((𝑐 · (𝑦 · 0)) + 0)) = ((0 · (𝑦 · 0)) + 0) ↔ ((𝑐 · (𝑦 · 0)) + 0) = 0))
5143, 50mpbid 232 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → ((𝑐 · (𝑦 · 0)) + 0) = 0)
5222, 51eqtr3d 2770 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) ∧ (𝑦 ∈ ℝ ∧ (𝑐 · 𝑦) = 1)) → (0 + 0) = 0)
538, 52rexlimddv 3140 . . . . 5 (((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) ∧ 𝑐 ≠ 0) → (0 + 0) = 0)
5453expcom 413 . . . 4 (𝑐 ≠ 0 → ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0))
556, 54pm2.61ine 3012 . . 3 ((𝑐 ∈ ℝ ∧ (0 + 𝑐) = 0) → (0 + 0) = 0)
5655rexlimiva 3126 . 2 (∃𝑐 ∈ ℝ (0 + 𝑐) = 0 → (0 + 0) = 0)
571, 2, 56mp2b 10 1 (0 + 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158
This theorem is referenced by:  mul02lem1  11296  mul02lem2  11297  addrid  11300  addlid  11303  addgt0  11610  addgegt0  11611  addgtge0  11612  addge0  11613  add20  11636  recextlem2  11755  crne0  12125  decaddm10  12653  10p10e20  12689  ser0  13963  faclbnd4lem3  14204  bcpasc  14230  relexpaddg  14962  fsumadd  15649  fsumrelem  15716  arisum  15769  fsumcube  15969  sadcaddlem  16370  sadcadd  16371  sadadd2  16373  bezout  16456  bezoutr1  16482  nnnn0modprm0  16720  pcaddlem  16802  4sqlem19  16877  139prm  17037  163prm  17038  317prm  17039  631prm  17040  1259lem1  17044  1259lem2  17045  1259lem4  17047  2503lem1  17050  2503lem2  17051  2503lem3  17052  4001lem1  17054  4001lem2  17055  4001lem3  17056  4001lem4  17057  sylow1lem1  19512  cnfld0  21331  pzriprnglem4  21423  psrbagaddcl  21863  mplcoe3  21974  reparphti  24924  reparphtiOLD  24925  cphpyth  25144  itg1addlem4  25628  ibladdlem  25749  itgaddlem1  25752  iblabslem  25757  iblabs  25758  coeaddlem  26182  dcubic  26784  log2ublem3  26886  log2ub  26887  chtublem  27150  logfacrlim  27163  2sqnn  27378  dchrisumlem1  27428  vtxdg0e  29455  1kp2ke3k  30428  dip0r  30699  pythi  30832  normpythi  31124  ocsh  31265  0lnfn  31967  lnopeq0i  31989  nlelshi  32042  unierri  32086  cos9thpiminply  33822  probun  34453  hgt750lem2  34686  poimirlem3  37683  poimirlem4  37684  ismblfin  37721  itg2addnc  37734  ibladdnclem  37736  itgaddnclem1  37738  itgaddnclem2  37739  iblabsnclem  37743  iblabsnc  37744  iblmulc2nc  37745  ftc1anclem8  37760  ftc1anc  37761  3lexlogpow5ineq1  42167  dffltz  42752  relexpaddss  43835  stoweidlem44  46166  fourierdlem42  46271  fourierdlem103  46331  fourierdlem104  46332  sqwvfoura  46350  sqwvfourb  46351  fmtno5lem4  47680  139prmALT  47720  line2ylem  48876
  Copyright terms: Public domain W3C validator