MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recex Structured version   Visualization version   GIF version

Theorem recex 11787
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
recex ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recex
Dummy variables 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11152 . . 3 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 recextlem2 11786 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑎 + (i · 𝑏)) ≠ 0) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0)
323expia 1121 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) ≠ 0 → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0))
4 remulcl 11136 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑎 · 𝑎) ∈ ℝ)
54anidms 567 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 · 𝑎) ∈ ℝ)
6 remulcl 11136 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑏 · 𝑏) ∈ ℝ)
76anidms 567 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 · 𝑏) ∈ ℝ)
8 readdcl 11134 . . . . . . . . . . . 12 (((𝑎 · 𝑎) ∈ ℝ ∧ (𝑏 · 𝑏) ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
95, 7, 8syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
10 ax-rrecex 11123 . . . . . . . . . . 11 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
119, 10sylan 580 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
12 recn 11141 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
13 recn 11141 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
14 recn 11141 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
15 ax-icn 11110 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
16 mulcl 11135 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ 𝑏 ∈ ℂ) → (i · 𝑏) ∈ ℂ)
1715, 16mpan 688 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℂ → (i · 𝑏) ∈ ℂ)
18 subcl 11400 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
1917, 18sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
20 mulcl 11135 . . . . . . . . . . . . . . . . 17 (((𝑎 − (i · 𝑏)) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
2119, 20sylan 580 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
22 addcl 11133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2317, 22sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2423adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2519adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
26 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
2724, 25, 26mulassd 11178 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
28 recextlem1 11785 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
2928adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
3029oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
3127, 30eqtr3d 2778 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
32 id 22 . . . . . . . . . . . . . . . . 17 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
3331, 32sylan9eq 2796 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1)
34 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → ((𝑎 + (i · 𝑏)) · 𝑥) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
3534eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → (((𝑎 + (i · 𝑏)) · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1))
3635rspcev 3581 . . . . . . . . . . . . . . . 16 ((((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
3721, 33, 36syl2an2r 683 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
3837exp31 420 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℂ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
3914, 38syl5 34 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℝ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
4039rexlimdv 3150 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4112, 13, 40syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4241adantr 481 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4311, 42mpd 15 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
4443ex 413 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
453, 44syld 47 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4645adantr 481 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → ((𝑎 + (i · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
47 neeq1 3006 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 ↔ (𝑎 + (i · 𝑏)) ≠ 0))
4847adantl 482 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 ≠ 0 ↔ (𝑎 + (i · 𝑏)) ≠ 0))
49 oveq1 7364 . . . . . . . . 9 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 · 𝑥) = ((𝑎 + (i · 𝑏)) · 𝑥))
5049eqeq1d 2738 . . . . . . . 8 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5150rexbidv 3175 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5251adantl 482 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5346, 48, 523imtr4d 293 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
5453ex 413 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)))
5554rexlimivv 3196 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
561, 55syl 17 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
5756imp 407 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388
This theorem is referenced by:  mulcand  11788  receu  11800
  Copyright terms: Public domain W3C validator