MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recex Structured version   Visualization version   GIF version

Theorem recex 11874
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
recex ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recex
Dummy variables 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11237 . . 3 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 recextlem2 11873 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑎 + (i · 𝑏)) ≠ 0) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0)
323expia 1121 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) ≠ 0 → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0))
4 remulcl 11219 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑎 · 𝑎) ∈ ℝ)
54anidms 566 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (𝑎 · 𝑎) ∈ ℝ)
6 remulcl 11219 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑏 · 𝑏) ∈ ℝ)
76anidms 566 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (𝑏 · 𝑏) ∈ ℝ)
8 readdcl 11217 . . . . . . . . . . . 12 (((𝑎 · 𝑎) ∈ ℝ ∧ (𝑏 · 𝑏) ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
95, 7, 8syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
10 ax-rrecex 11206 . . . . . . . . . . 11 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
119, 10sylan 580 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
12 recn 11224 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
13 recn 11224 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
14 recn 11224 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
15 ax-icn 11193 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
16 mulcl 11218 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ 𝑏 ∈ ℂ) → (i · 𝑏) ∈ ℂ)
1715, 16mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℂ → (i · 𝑏) ∈ ℂ)
18 subcl 11486 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
1917, 18sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
20 mulcl 11218 . . . . . . . . . . . . . . . . 17 (((𝑎 − (i · 𝑏)) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
2119, 20sylan 580 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
22 addcl 11216 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2317, 22sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2423adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2519adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
2724, 25, 26mulassd 11263 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
28 recextlem1 11872 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
2928adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
3029oveq1d 7425 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
3127, 30eqtr3d 2773 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
32 id 22 . . . . . . . . . . . . . . . . 17 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
3331, 32sylan9eq 2791 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1)
34 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → ((𝑎 + (i · 𝑏)) · 𝑥) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
3534eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → (((𝑎 + (i · 𝑏)) · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1))
3635rspcev 3606 . . . . . . . . . . . . . . . 16 ((((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
3721, 33, 36syl2an2r 685 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
3837exp31 419 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℂ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
3914, 38syl5 34 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℝ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
4039rexlimdv 3140 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4112, 13, 40syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4241adantr 480 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4311, 42mpd 15 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
4443ex 412 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
453, 44syld 47 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4645adantr 480 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → ((𝑎 + (i · 𝑏)) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
47 neeq1 2995 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 ↔ (𝑎 + (i · 𝑏)) ≠ 0))
4847adantl 481 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 ≠ 0 ↔ (𝑎 + (i · 𝑏)) ≠ 0))
49 oveq1 7417 . . . . . . . . 9 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 · 𝑥) = ((𝑎 + (i · 𝑏)) · 𝑥))
5049eqeq1d 2738 . . . . . . . 8 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5150rexbidv 3165 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5251adantl 481 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5346, 48, 523imtr4d 294 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
5453ex 412 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)))
5554rexlimivv 3187 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
561, 55syl 17 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
5756imp 406 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  mulcand  11875  receu  11887
  Copyright terms: Public domain W3C validator