MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccl Structured version   Visualization version   GIF version

Theorem rereccl 11848
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rereccl ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rereccl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11087 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
2 eqcom 2740 . . . . 5 (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥)
3 1cnd 11116 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
4 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
54recnd 11149 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
6 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
76recnd 11149 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
8 simplr 768 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0)
9 divmul 11788 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
103, 5, 7, 8, 9syl112anc 1376 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
112, 10bitrid 283 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1))
1211rexbidva 3155 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
131, 12mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
14 risset 3208 . 2 ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
1513, 14sylibr 234 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   · cmul 11020   / cdiv 11783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784
This theorem is referenced by:  redivcl  11849  rerecclzi  11894  rereccld  11957  ltdiv2  12017  ltrec1  12018  lerec2  12019  lediv2  12021  lediv12a  12024  recreclt  12030  recnz  12556  reexpclz  13993  rediv  15042  imdiv  15049  resqrex  15161  resubdrg  21549  axcontlem2  28947  leopmul  32118  nmopleid  32123  cdj1i  32417  lediv2aALT  35744
  Copyright terms: Public domain W3C validator