| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rereccl | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rereccl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rrecex 11087 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
| 2 | eqcom 2740 | . . . . 5 ⊢ (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥) | |
| 3 | 1cnd 11116 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 5 | 4 | recnd 11149 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 6 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 7 | 6 | recnd 11149 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 8 | simplr 768 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0) | |
| 9 | divmul 11788 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) | |
| 10 | 3, 5, 7, 8, 9 | syl112anc 1376 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) |
| 11 | 2, 10 | bitrid 283 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1)) |
| 12 | 11 | rexbidva 3155 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
| 13 | 1, 12 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) |
| 14 | risset 3208 | . 2 ⊢ ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 1c1 11016 · cmul 11020 / cdiv 11783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 |
| This theorem is referenced by: redivcl 11849 rerecclzi 11894 rereccld 11957 ltdiv2 12017 ltrec1 12018 lerec2 12019 lediv2 12021 lediv12a 12024 recreclt 12030 recnz 12556 reexpclz 13993 rediv 15042 imdiv 15049 resqrex 15161 resubdrg 21549 axcontlem2 28947 leopmul 32118 nmopleid 32123 cdj1i 32417 lediv2aALT 35744 |
| Copyright terms: Public domain | W3C validator |