Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rereccl | Structured version Visualization version GIF version |
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
rereccl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rrecex 11022 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
2 | eqcom 2743 | . . . . 5 ⊢ (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥) | |
3 | 1cnd 11049 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
4 | simpr 485 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
5 | 4 | recnd 11082 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
6 | simpll 764 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
7 | 6 | recnd 11082 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
8 | simplr 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0) | |
9 | divmul 11715 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) | |
10 | 3, 5, 7, 8, 9 | syl112anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) |
11 | 2, 10 | bitrid 282 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1)) |
12 | 11 | rexbidva 3169 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
13 | 1, 12 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) |
14 | risset 3217 | . 2 ⊢ ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 (class class class)co 7316 ℂcc 10948 ℝcr 10949 0cc0 10950 1c1 10951 · cmul 10955 / cdiv 11711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 |
This theorem is referenced by: redivcl 11773 rerecclzi 11818 rereccld 11881 ltdiv2 11940 ltrec1 11941 lerec2 11942 lediv2 11944 lediv12a 11947 recreclt 11953 recnz 12474 reexpclz 13881 rediv 14918 imdiv 14925 resqrex 15038 resubdrg 20893 axcontlem2 27466 leopmul 30628 nmopleid 30633 cdj1i 30927 lediv2aALT 33770 |
Copyright terms: Public domain | W3C validator |