MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccl Structured version   Visualization version   GIF version

Theorem rereccl 11937
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rereccl ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ (1 / ๐ด) โˆˆ โ„)

Proof of Theorem rereccl
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11185 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ (๐ด ยท ๐‘ฅ) = 1)
2 eqcom 2738 . . . . 5 (๐‘ฅ = (1 / ๐ด) โ†” (1 / ๐ด) = ๐‘ฅ)
3 1cnd 11214 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ 1 โˆˆ โ„‚)
4 simpr 484 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐‘ฅ โˆˆ โ„)
54recnd 11247 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐‘ฅ โˆˆ โ„‚)
6 simpll 764 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐ด โˆˆ โ„)
76recnd 11247 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐ด โˆˆ โ„‚)
8 simplr 766 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐ด โ‰  0)
9 divmul 11880 . . . . . 6 ((1 โˆˆ โ„‚ โˆง ๐‘ฅ โˆˆ โ„‚ โˆง (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0)) โ†’ ((1 / ๐ด) = ๐‘ฅ โ†” (๐ด ยท ๐‘ฅ) = 1))
103, 5, 7, 8, 9syl112anc 1373 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ((1 / ๐ด) = ๐‘ฅ โ†” (๐ด ยท ๐‘ฅ) = 1))
112, 10bitrid 283 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐‘ฅ โˆˆ โ„) โ†’ (๐‘ฅ = (1 / ๐ด) โ†” (๐ด ยท ๐‘ฅ) = 1))
1211rexbidva 3175 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ ๐‘ฅ = (1 / ๐ด) โ†” โˆƒ๐‘ฅ โˆˆ โ„ (๐ด ยท ๐‘ฅ) = 1))
131, 12mpbird 257 . 2 ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ ๐‘ฅ = (1 / ๐ด))
14 risset 3229 . 2 ((1 / ๐ด) โˆˆ โ„ โ†” โˆƒ๐‘ฅ โˆˆ โ„ ๐‘ฅ = (1 / ๐ด))
1513, 14sylibr 233 1 ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ (1 / ๐ด) โˆˆ โ„)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939  โˆƒwrex 3069  (class class class)co 7412  โ„‚cc 11111  โ„cr 11112  0cc0 11113  1c1 11114   ยท cmul 11118   / cdiv 11876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877
This theorem is referenced by:  redivcl  11938  rerecclzi  11983  rereccld  12046  ltdiv2  12105  ltrec1  12106  lerec2  12107  lediv2  12109  lediv12a  12112  recreclt  12118  recnz  12642  reexpclz  14053  rediv  15083  imdiv  15090  resqrex  15202  resubdrg  21381  axcontlem2  28491  leopmul  31655  nmopleid  31660  cdj1i  31954  lediv2aALT  34961
  Copyright terms: Public domain W3C validator