![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rereccl | Structured version Visualization version GIF version |
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
rereccl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rrecex 10406 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
2 | eqcom 2780 | . . . . 5 ⊢ (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥) | |
3 | 1cnd 10433 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
4 | simpr 477 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
5 | 4 | recnd 10467 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
6 | simpll 755 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
7 | 6 | recnd 10467 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
8 | simplr 757 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ≠ 0) | |
9 | divmul 11101 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) | |
10 | 3, 5, 7, 8, 9 | syl112anc 1355 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) |
11 | 2, 10 | syl5bb 275 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1)) |
12 | 11 | rexbidva 3236 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
13 | 1, 12 | mpbird 249 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) |
14 | risset 3208 | . 2 ⊢ ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) | |
15 | 13, 14 | sylibr 226 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 ∃wrex 3084 (class class class)co 6975 ℂcc 10332 ℝcr 10333 0cc0 10334 1c1 10335 · cmul 10339 / cdiv 11097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-po 5323 df-so 5324 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 |
This theorem is referenced by: redivcl 11159 rerecclzi 11204 rereccld 11267 ltdiv2 11326 ltrec1 11327 lerec2 11328 lediv2 11330 lediv12a 11333 recreclt 11339 recnz 11869 reexpclz 13263 rediv 14350 imdiv 14357 resqrex 14470 resubdrg 20470 axcontlem2 26470 leopmul 29708 nmopleid 29713 cdj1i 30007 lediv2aALT 32473 |
Copyright terms: Public domain | W3C validator |