Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul02 Structured version   Visualization version   GIF version

Theorem remul02 42440
Description: Real number version of mul02 11440 proven without ax-mulcom 11220. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul02 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem remul02
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-1ne2 42305 . 2 1 ≠ 2
2 elre0re 42295 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
42, 3remulcld 11292 . . . . . 6 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
5 ax-rrecex 11228 . . . . . 6 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
64, 5sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
7 simprr 772 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 1)
8 df-2 12330 . . . . . . . . . . . . 13 2 = (1 + 1)
98oveq1i 7442 . . . . . . . . . . . 12 (2 · 0) = ((1 + 1) · 0)
10 re0m0e0 42437 . . . . . . . . . . . . . . 15 (0 − 0) = 0
1110eqcomi 2745 . . . . . . . . . . . . . 14 0 = (0 − 0)
1211oveq2i 7443 . . . . . . . . . . . . 13 ((1 + 1) · 0) = ((1 + 1) · (0 − 0))
13 1re 11262 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1413, 13readdcli 11277 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
15 sn-00idlem1 42433 . . . . . . . . . . . . . 14 ((1 + 1) ∈ ℝ → ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1))
17 repnpcan 42427 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + 1) − (1 + 1)) = (1 − 1))
1813, 13, 13, 17mp3an 1462 . . . . . . . . . . . . . 14 ((1 + 1) − (1 + 1)) = (1 − 1)
19 re1m1e0m0 42432 . . . . . . . . . . . . . 14 (1 − 1) = (0 − 0)
2018, 19, 103eqtri 2768 . . . . . . . . . . . . 13 ((1 + 1) − (1 + 1)) = 0
2112, 16, 203eqtri 2768 . . . . . . . . . . . 12 ((1 + 1) · 0) = 0
229, 21eqtr2i 2765 . . . . . . . . . . 11 0 = (2 · 0)
2322oveq1i 7442 . . . . . . . . . 10 (0 · 𝐴) = ((2 · 0) · 𝐴)
2423oveq1i 7442 . . . . . . . . 9 ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥)
2524a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥))
26 2cnd 12345 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 2 ∈ ℂ)
27 0cnd 11255 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 0 ∈ ℂ)
28 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
2928recnd 11290 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
3026, 27, 29mulassd 11285 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · 0) · 𝐴) = (2 · (0 · 𝐴)))
3130oveq1d 7447 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (((2 · 0) · 𝐴) · 𝑥) = ((2 · (0 · 𝐴)) · 𝑥))
324ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℝ)
3332recnd 11290 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℂ)
34 simprl 770 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
3534recnd 11290 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
3626, 33, 35mulassd 11285 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · (0 · 𝐴)) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
3725, 31, 363eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
387oveq2d 7448 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · ((0 · 𝐴) · 𝑥)) = (2 · 1))
39 2re 12341 . . . . . . . 8 2 ∈ ℝ
40 ax-1rid 11226 . . . . . . . 8 (2 ∈ ℝ → (2 · 1) = 2)
4139, 40mp1i 13 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · 1) = 2)
4237, 38, 413eqtrd 2780 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 2)
437, 42eqtr3d 2778 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 1 = 2)
446, 43rexlimddv 3160 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 2)
4544ex 412 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 2))
4645necon1d 2961 . 2 (𝐴 ∈ ℝ → (1 ≠ 2 → (0 · 𝐴) = 0))
471, 46mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wrex 3069  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  2c2 12322   cresub 42400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-2 12330  df-resub 42401
This theorem is referenced by:  remul01  42442  sn-0tie0  42474  sn-mul02  42475  nn0mulcom  42489  zmulcomlem  42490  mulgt0con1d  42493  sn-inelr  42502
  Copyright terms: Public domain W3C validator