Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul02 Structured version   Visualization version   GIF version

Theorem remul02 40096
Description: Real number version of mul02 11010 proven without ax-mulcom 10793. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul02 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem remul02
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-1ne2 40002 . 2 1 ≠ 2
2 elre0re 39998 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
42, 3remulcld 10863 . . . . . 6 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
5 ax-rrecex 10801 . . . . . 6 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
64, 5sylan 583 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
7 simprr 773 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 1)
8 df-2 11893 . . . . . . . . . . . . 13 2 = (1 + 1)
98oveq1i 7223 . . . . . . . . . . . 12 (2 · 0) = ((1 + 1) · 0)
10 re0m0e0 40093 . . . . . . . . . . . . . . 15 (0 − 0) = 0
1110eqcomi 2746 . . . . . . . . . . . . . 14 0 = (0 − 0)
1211oveq2i 7224 . . . . . . . . . . . . 13 ((1 + 1) · 0) = ((1 + 1) · (0 − 0))
13 1re 10833 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1413, 13readdcli 10848 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
15 sn-00idlem1 40089 . . . . . . . . . . . . . 14 ((1 + 1) ∈ ℝ → ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1))
17 repnpcan 40083 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + 1) − (1 + 1)) = (1 − 1))
1813, 13, 13, 17mp3an 1463 . . . . . . . . . . . . . 14 ((1 + 1) − (1 + 1)) = (1 − 1)
19 re1m1e0m0 40088 . . . . . . . . . . . . . 14 (1 − 1) = (0 − 0)
2018, 19, 103eqtri 2769 . . . . . . . . . . . . 13 ((1 + 1) − (1 + 1)) = 0
2112, 16, 203eqtri 2769 . . . . . . . . . . . 12 ((1 + 1) · 0) = 0
229, 21eqtr2i 2766 . . . . . . . . . . 11 0 = (2 · 0)
2322oveq1i 7223 . . . . . . . . . 10 (0 · 𝐴) = ((2 · 0) · 𝐴)
2423oveq1i 7223 . . . . . . . . 9 ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥)
2524a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥))
26 2cnd 11908 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 2 ∈ ℂ)
27 0cnd 10826 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 0 ∈ ℂ)
28 simpll 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
2928recnd 10861 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
3026, 27, 29mulassd 10856 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · 0) · 𝐴) = (2 · (0 · 𝐴)))
3130oveq1d 7228 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (((2 · 0) · 𝐴) · 𝑥) = ((2 · (0 · 𝐴)) · 𝑥))
324ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℝ)
3332recnd 10861 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℂ)
34 simprl 771 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
3534recnd 10861 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
3626, 33, 35mulassd 10856 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · (0 · 𝐴)) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
3725, 31, 363eqtrd 2781 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
387oveq2d 7229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · ((0 · 𝐴) · 𝑥)) = (2 · 1))
39 2re 11904 . . . . . . . 8 2 ∈ ℝ
40 ax-1rid 10799 . . . . . . . 8 (2 ∈ ℝ → (2 · 1) = 2)
4139, 40mp1i 13 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · 1) = 2)
4237, 38, 413eqtrd 2781 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 2)
437, 42eqtr3d 2779 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 1 = 2)
446, 43rexlimddv 3210 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 2)
4544ex 416 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 2))
4645necon1d 2962 . 2 (𝐴 ∈ ℝ → (1 ≠ 2 → (0 · 𝐴) = 0))
471, 46mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wrex 3062  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  2c2 11885   cresub 40056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-2 11893  df-resub 40057
This theorem is referenced by:  remul01  40098  sn-0tie0  40129  sn-mul02  40130  mulgt0con1d  40136  sn-inelr  40143
  Copyright terms: Public domain W3C validator