Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul02 Structured version   Visualization version   GIF version

Theorem remul02 42412
Description: Real number version of mul02 11437 proven without ax-mulcom 11217. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul02 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem remul02
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-1ne2 42279 . 2 1 ≠ 2
2 elre0re 42274 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
42, 3remulcld 11289 . . . . . 6 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
5 ax-rrecex 11225 . . . . . 6 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
64, 5sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
7 simprr 773 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 1)
8 df-2 12327 . . . . . . . . . . . . 13 2 = (1 + 1)
98oveq1i 7441 . . . . . . . . . . . 12 (2 · 0) = ((1 + 1) · 0)
10 re0m0e0 42409 . . . . . . . . . . . . . . 15 (0 − 0) = 0
1110eqcomi 2744 . . . . . . . . . . . . . 14 0 = (0 − 0)
1211oveq2i 7442 . . . . . . . . . . . . 13 ((1 + 1) · 0) = ((1 + 1) · (0 − 0))
13 1re 11259 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1413, 13readdcli 11274 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
15 sn-00idlem1 42405 . . . . . . . . . . . . . 14 ((1 + 1) ∈ ℝ → ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1))
17 repnpcan 42399 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + 1) − (1 + 1)) = (1 − 1))
1813, 13, 13, 17mp3an 1460 . . . . . . . . . . . . . 14 ((1 + 1) − (1 + 1)) = (1 − 1)
19 re1m1e0m0 42404 . . . . . . . . . . . . . 14 (1 − 1) = (0 − 0)
2018, 19, 103eqtri 2767 . . . . . . . . . . . . 13 ((1 + 1) − (1 + 1)) = 0
2112, 16, 203eqtri 2767 . . . . . . . . . . . 12 ((1 + 1) · 0) = 0
229, 21eqtr2i 2764 . . . . . . . . . . 11 0 = (2 · 0)
2322oveq1i 7441 . . . . . . . . . 10 (0 · 𝐴) = ((2 · 0) · 𝐴)
2423oveq1i 7441 . . . . . . . . 9 ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥)
2524a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥))
26 2cnd 12342 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 2 ∈ ℂ)
27 0cnd 11252 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 0 ∈ ℂ)
28 simpll 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
2928recnd 11287 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
3026, 27, 29mulassd 11282 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · 0) · 𝐴) = (2 · (0 · 𝐴)))
3130oveq1d 7446 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (((2 · 0) · 𝐴) · 𝑥) = ((2 · (0 · 𝐴)) · 𝑥))
324ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℝ)
3332recnd 11287 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℂ)
34 simprl 771 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
3534recnd 11287 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
3626, 33, 35mulassd 11282 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · (0 · 𝐴)) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
3725, 31, 363eqtrd 2779 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
387oveq2d 7447 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · ((0 · 𝐴) · 𝑥)) = (2 · 1))
39 2re 12338 . . . . . . . 8 2 ∈ ℝ
40 ax-1rid 11223 . . . . . . . 8 (2 ∈ ℝ → (2 · 1) = 2)
4139, 40mp1i 13 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · 1) = 2)
4237, 38, 413eqtrd 2779 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 2)
437, 42eqtr3d 2777 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 1 = 2)
446, 43rexlimddv 3159 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 2)
4544ex 412 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 2))
4645necon1d 2960 . 2 (𝐴 ∈ ℝ → (1 ≠ 2 → (0 · 𝐴) = 0))
471, 46mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  2c2 12319   cresub 42372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-2 12327  df-resub 42373
This theorem is referenced by:  remul01  42414  sn-0tie0  42446  sn-mul02  42447  nn0mulcom  42461  zmulcomlem  42462  mulgt0con1d  42465  sn-inelr  42474
  Copyright terms: Public domain W3C validator