Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul02 Structured version   Visualization version   GIF version

Theorem remul02 40609
Description: Real number version of mul02 11232 proven without ax-mulcom 11014. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul02 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem remul02
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-1ne2 40516 . 2 1 ≠ 2
2 elre0re 40512 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
42, 3remulcld 11084 . . . . . 6 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
5 ax-rrecex 11022 . . . . . 6 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
64, 5sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
7 simprr 770 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 1)
8 df-2 12115 . . . . . . . . . . . . 13 2 = (1 + 1)
98oveq1i 7326 . . . . . . . . . . . 12 (2 · 0) = ((1 + 1) · 0)
10 re0m0e0 40606 . . . . . . . . . . . . . . 15 (0 − 0) = 0
1110eqcomi 2745 . . . . . . . . . . . . . 14 0 = (0 − 0)
1211oveq2i 7327 . . . . . . . . . . . . 13 ((1 + 1) · 0) = ((1 + 1) · (0 − 0))
13 1re 11054 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1413, 13readdcli 11069 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
15 sn-00idlem1 40602 . . . . . . . . . . . . . 14 ((1 + 1) ∈ ℝ → ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1))
17 repnpcan 40596 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + 1) − (1 + 1)) = (1 − 1))
1813, 13, 13, 17mp3an 1460 . . . . . . . . . . . . . 14 ((1 + 1) − (1 + 1)) = (1 − 1)
19 re1m1e0m0 40601 . . . . . . . . . . . . . 14 (1 − 1) = (0 − 0)
2018, 19, 103eqtri 2768 . . . . . . . . . . . . 13 ((1 + 1) − (1 + 1)) = 0
2112, 16, 203eqtri 2768 . . . . . . . . . . . 12 ((1 + 1) · 0) = 0
229, 21eqtr2i 2765 . . . . . . . . . . 11 0 = (2 · 0)
2322oveq1i 7326 . . . . . . . . . 10 (0 · 𝐴) = ((2 · 0) · 𝐴)
2423oveq1i 7326 . . . . . . . . 9 ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥)
2524a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥))
26 2cnd 12130 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 2 ∈ ℂ)
27 0cnd 11047 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 0 ∈ ℂ)
28 simpll 764 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
2928recnd 11082 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
3026, 27, 29mulassd 11077 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · 0) · 𝐴) = (2 · (0 · 𝐴)))
3130oveq1d 7331 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (((2 · 0) · 𝐴) · 𝑥) = ((2 · (0 · 𝐴)) · 𝑥))
324ad2antrr 723 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℝ)
3332recnd 11082 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℂ)
34 simprl 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
3534recnd 11082 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
3626, 33, 35mulassd 11077 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · (0 · 𝐴)) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
3725, 31, 363eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
387oveq2d 7332 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · ((0 · 𝐴) · 𝑥)) = (2 · 1))
39 2re 12126 . . . . . . . 8 2 ∈ ℝ
40 ax-1rid 11020 . . . . . . . 8 (2 ∈ ℝ → (2 · 1) = 2)
4139, 40mp1i 13 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · 1) = 2)
4237, 38, 413eqtrd 2780 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 2)
437, 42eqtr3d 2778 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 1 = 2)
446, 43rexlimddv 3154 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 2)
4544ex 413 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 2))
4645necon1d 2962 . 2 (𝐴 ∈ ℝ → (1 ≠ 2 → (0 · 𝐴) = 0))
471, 46mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  wrex 3070  (class class class)co 7316  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955  2c2 12107   cresub 40569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-ltxr 11093  df-2 12115  df-resub 40570
This theorem is referenced by:  remul01  40611  sn-0tie0  40642  sn-mul02  40643  mulgt0con1d  40649  sn-inelr  40656
  Copyright terms: Public domain W3C validator