MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   GIF version

Theorem mul02lem1 11416
Description: Lemma for mul02 11418. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))

Proof of Theorem mul02lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11242 . . . . 5 0 ∈ ℝ
2 remulcl 11219 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 · 𝐴) ∈ ℝ)
31, 2mpan 690 . . . 4 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
4 ax-rrecex 11206 . . . 4 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
53, 4sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
65adantr 480 . 2 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
7 00id 11415 . . . . 5 (0 + 0) = 0
87oveq2i 7421 . . . 4 (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (((𝑦 · 𝐴) · 𝐵) · 0)
98eqcomi 2745 . . 3 (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 𝐵) · (0 + 0))
10 simprl 770 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1110recnd 11268 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℂ)
12 simplll 774 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℝ)
1312recnd 11268 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1411, 13mulcld 11260 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
15 simplr 768 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 ∈ ℂ)
16 0cn 11232 . . . . . 6 0 ∈ ℂ
17 mul32 11406 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1816, 17mp3an3 1452 . . . . 5 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1914, 15, 18syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
20 mul31 11407 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2116, 20mp3an3 1452 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2211, 13, 21syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
23 simprr 772 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((0 · 𝐴) · 𝑦) = 1)
2422, 23eqtrd 2771 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = 1)
2524oveq1d 7425 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = (1 · 𝐵))
26 mullid 11239 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2726ad2antlr 727 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (1 · 𝐵) = 𝐵)
2825, 27eqtrd 2771 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = 𝐵)
2919, 28eqtrd 2771 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = 𝐵)
3014, 15mulcld 11260 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 𝐵) ∈ ℂ)
31 adddi 11223 . . . . . 6 ((((𝑦 · 𝐴) · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3216, 16, 31mp3an23 1455 . . . . 5 (((𝑦 · 𝐴) · 𝐵) ∈ ℂ → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3330, 32syl 17 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3429, 29oveq12d 7428 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)) = (𝐵 + 𝐵))
3533, 34eqtrd 2771 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (𝐵 + 𝐵))
369, 29, 353eqtr3a 2795 . 2 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 = (𝐵 + 𝐵))
376, 36rexlimddv 3148 1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279
This theorem is referenced by:  mul02lem2  11417
  Copyright terms: Public domain W3C validator