MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   GIF version

Theorem mul02lem1 11331
Description: Lemma for mul02 11333. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))

Proof of Theorem mul02lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11157 . . . . 5 0 ∈ ℝ
2 remulcl 11136 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 · 𝐴) ∈ ℝ)
31, 2mpan 688 . . . 4 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
4 ax-rrecex 11123 . . . 4 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
53, 4sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
65adantr 481 . 2 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
7 00id 11330 . . . . 5 (0 + 0) = 0
87oveq2i 7368 . . . 4 (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (((𝑦 · 𝐴) · 𝐵) · 0)
98eqcomi 2745 . . 3 (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 𝐵) · (0 + 0))
10 simprl 769 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1110recnd 11183 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℂ)
12 simplll 773 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℝ)
1312recnd 11183 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1411, 13mulcld 11175 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
15 simplr 767 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 ∈ ℂ)
16 0cn 11147 . . . . . 6 0 ∈ ℂ
17 mul32 11321 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1816, 17mp3an3 1450 . . . . 5 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1914, 15, 18syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
20 mul31 11322 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2116, 20mp3an3 1450 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2211, 13, 21syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
23 simprr 771 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((0 · 𝐴) · 𝑦) = 1)
2422, 23eqtrd 2776 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = 1)
2524oveq1d 7372 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = (1 · 𝐵))
26 mulid2 11154 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2726ad2antlr 725 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (1 · 𝐵) = 𝐵)
2825, 27eqtrd 2776 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = 𝐵)
2919, 28eqtrd 2776 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = 𝐵)
3014, 15mulcld 11175 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 𝐵) ∈ ℂ)
31 adddi 11140 . . . . . 6 ((((𝑦 · 𝐴) · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3216, 16, 31mp3an23 1453 . . . . 5 (((𝑦 · 𝐴) · 𝐵) ∈ ℂ → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3330, 32syl 17 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3429, 29oveq12d 7375 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)) = (𝐵 + 𝐵))
3533, 34eqtrd 2776 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (𝐵 + 𝐵))
369, 29, 353eqtr3a 2800 . 2 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 = (𝐵 + 𝐵))
376, 36rexlimddv 3158 1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194
This theorem is referenced by:  mul02lem2  11332
  Copyright terms: Public domain W3C validator