MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   GIF version

Theorem mul02lem1 11151
Description: Lemma for mul02 11153. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))

Proof of Theorem mul02lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10977 . . . . 5 0 ∈ ℝ
2 remulcl 10956 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 · 𝐴) ∈ ℝ)
31, 2mpan 687 . . . 4 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
4 ax-rrecex 10943 . . . 4 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
53, 4sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
65adantr 481 . 2 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
7 00id 11150 . . . . 5 (0 + 0) = 0
87oveq2i 7286 . . . 4 (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (((𝑦 · 𝐴) · 𝐵) · 0)
98eqcomi 2747 . . 3 (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 𝐵) · (0 + 0))
10 simprl 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1110recnd 11003 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℂ)
12 simplll 772 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℝ)
1312recnd 11003 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1411, 13mulcld 10995 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
15 simplr 766 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 ∈ ℂ)
16 0cn 10967 . . . . . 6 0 ∈ ℂ
17 mul32 11141 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1816, 17mp3an3 1449 . . . . 5 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1914, 15, 18syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
20 mul31 11142 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2116, 20mp3an3 1449 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2211, 13, 21syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
23 simprr 770 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((0 · 𝐴) · 𝑦) = 1)
2422, 23eqtrd 2778 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = 1)
2524oveq1d 7290 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = (1 · 𝐵))
26 mulid2 10974 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2726ad2antlr 724 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (1 · 𝐵) = 𝐵)
2825, 27eqtrd 2778 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = 𝐵)
2919, 28eqtrd 2778 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = 𝐵)
3014, 15mulcld 10995 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 𝐵) ∈ ℂ)
31 adddi 10960 . . . . . 6 ((((𝑦 · 𝐴) · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3216, 16, 31mp3an23 1452 . . . . 5 (((𝑦 · 𝐴) · 𝐵) ∈ ℂ → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3330, 32syl 17 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3429, 29oveq12d 7293 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)) = (𝐵 + 𝐵))
3533, 34eqtrd 2778 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (𝐵 + 𝐵))
369, 29, 353eqtr3a 2802 . 2 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 = (𝐵 + 𝐵))
376, 36rexlimddv 3220 1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014
This theorem is referenced by:  mul02lem2  11152
  Copyright terms: Public domain W3C validator