Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulcand Structured version   Visualization version   GIF version

Theorem remulcand 42445
Description: Commuted version of remulcan2d 42277 without ax-mulcom 11217. (Contributed by SN, 21-Feb-2024.)
Hypotheses
Ref Expression
remulcand.1 (𝜑𝐴 ∈ ℝ)
remulcand.2 (𝜑𝐵 ∈ ℝ)
remulcand.3 (𝜑𝐶 ∈ ℝ)
remulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
remulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem remulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 remulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 ax-rrecex 11225 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
51adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
65adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝐶 ∈ ℝ)
7 simplr 769 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝑥 ∈ ℝ)
8 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝐶 · 𝑥) = 1)
96, 7, 8remulinvcom 42439 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝑥 · 𝐶) = 1)
109ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → (𝑥 · 𝐶) = 1))
11 oveq2 7439 . . . . . . . 8 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
12113ad2ant3 1134 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
13 simp2 1136 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · 𝐶) = 1)
1413oveq1d 7446 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
15 simp1r 1197 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℝ)
1615recnd 11287 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℂ)
1753ad2ant1 1132 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℝ)
1817recnd 11287 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℂ)
19 simp1l 1196 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝜑)
20 remulcand.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℝ)
2221recnd 11287 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℂ)
2316, 18, 22mulassd 11282 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
24 remullid 42440 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2521, 24syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐴) = 𝐴)
2614, 23, 253eqtr3d 2783 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
2713oveq1d 7446 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
28 remulcand.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2919, 28syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℝ)
3029recnd 11287 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℂ)
3116, 18, 30mulassd 11282 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
32 remullid 42440 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
3329, 32syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐵) = 𝐵)
3427, 31, 333eqtr3d 2783 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
3512, 26, 343eqtr3d 2783 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 = 𝐵)
36353exp 1118 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝑥 · 𝐶) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3710, 36syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3837impr 454 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
394, 38rexlimddv 3159 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
40 oveq2 7439 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
4139, 40impbid1 225 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-2 12327  df-3 12328  df-resub 42373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator