Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulcand Structured version   Visualization version   GIF version

Theorem remulcand 42480
Description: Commuted version of remulcan2d 42298 without ax-mulcom 11070. (Contributed by SN, 21-Feb-2024.)
Hypotheses
Ref Expression
remulcand.1 (𝜑𝐴 ∈ ℝ)
remulcand.2 (𝜑𝐵 ∈ ℝ)
remulcand.3 (𝜑𝐶 ∈ ℝ)
remulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
remulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem remulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 remulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 ax-rrecex 11078 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
51adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
65adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝐶 ∈ ℝ)
7 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝑥 ∈ ℝ)
8 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝐶 · 𝑥) = 1)
96, 7, 8remulinvcom 42474 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝑥 · 𝐶) = 1)
109ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → (𝑥 · 𝐶) = 1))
11 oveq2 7354 . . . . . . . 8 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
12113ad2ant3 1135 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
13 simp2 1137 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · 𝐶) = 1)
1413oveq1d 7361 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
15 simp1r 1199 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℝ)
1615recnd 11140 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℂ)
1753ad2ant1 1133 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℝ)
1817recnd 11140 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℂ)
19 simp1l 1198 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝜑)
20 remulcand.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℝ)
2221recnd 11140 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℂ)
2316, 18, 22mulassd 11135 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
24 remullid 42475 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2521, 24syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐴) = 𝐴)
2614, 23, 253eqtr3d 2774 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
2713oveq1d 7361 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
28 remulcand.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2919, 28syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℝ)
3029recnd 11140 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℂ)
3116, 18, 30mulassd 11135 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
32 remullid 42475 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
3329, 32syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐵) = 𝐵)
3427, 31, 333eqtr3d 2774 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
3512, 26, 343eqtr3d 2774 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 = 𝐵)
36353exp 1119 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝑥 · 𝐶) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3710, 36syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3837impr 454 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
394, 38rexlimddv 3139 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
40 oveq2 7354 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
4139, 40impbid1 225 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-2 12188  df-3 12189  df-resub 42407
This theorem is referenced by:  rediveud  42484
  Copyright terms: Public domain W3C validator