Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulcand Structured version   Visualization version   GIF version

Theorem remulcand 40893
Description: Commuted version of remulcan2d 40765 without ax-mulcom 11115. (Contributed by SN, 21-Feb-2024.)
Hypotheses
Ref Expression
remulcand.1 (𝜑𝐴 ∈ ℝ)
remulcand.2 (𝜑𝐵 ∈ ℝ)
remulcand.3 (𝜑𝐶 ∈ ℝ)
remulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
remulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem remulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 remulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 ax-rrecex 11123 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
51adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
65adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝐶 ∈ ℝ)
7 simplr 767 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝑥 ∈ ℝ)
8 simpr 485 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝐶 · 𝑥) = 1)
96, 7, 8remulinvcom 40887 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝑥 · 𝐶) = 1)
109ex 413 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → (𝑥 · 𝐶) = 1))
11 oveq2 7365 . . . . . . . 8 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
12113ad2ant3 1135 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
13 simp2 1137 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · 𝐶) = 1)
1413oveq1d 7372 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
15 simp1r 1198 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℝ)
1615recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℂ)
1753ad2ant1 1133 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℝ)
1817recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℂ)
19 simp1l 1197 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝜑)
20 remulcand.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℝ)
2221recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℂ)
2316, 18, 22mulassd 11178 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
24 remulid2 40888 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2521, 24syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐴) = 𝐴)
2614, 23, 253eqtr3d 2784 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
2713oveq1d 7372 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
28 remulcand.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2919, 28syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℝ)
3029recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℂ)
3116, 18, 30mulassd 11178 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
32 remulid2 40888 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
3329, 32syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐵) = 𝐵)
3427, 31, 333eqtr3d 2784 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
3512, 26, 343eqtr3d 2784 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 = 𝐵)
36353exp 1119 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝑥 · 𝐶) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3710, 36syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3837impr 455 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
394, 38rexlimddv 3158 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
40 oveq2 7365 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
4139, 40impbid1 224 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-2 12216  df-3 12217  df-resub 40821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator