Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulcand Structured version   Visualization version   GIF version

Theorem remulcand 40341
Description: Commuted version of remulcan2d 40214 without ax-mulcom 10866. (Contributed by SN, 21-Feb-2024.)
Hypotheses
Ref Expression
remulcand.1 (𝜑𝐴 ∈ ℝ)
remulcand.2 (𝜑𝐵 ∈ ℝ)
remulcand.3 (𝜑𝐶 ∈ ℝ)
remulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
remulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem remulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 remulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 ax-rrecex 10874 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 583 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
51adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
65adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝐶 ∈ ℝ)
7 simplr 765 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝑥 ∈ ℝ)
8 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝐶 · 𝑥) = 1)
96, 7, 8remulinvcom 40335 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝑥 · 𝐶) = 1)
109ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → (𝑥 · 𝐶) = 1))
11 oveq2 7263 . . . . . . . 8 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
12113ad2ant3 1133 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
13 simp2 1135 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · 𝐶) = 1)
1413oveq1d 7270 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
15 simp1r 1196 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℝ)
1615recnd 10934 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℂ)
1753ad2ant1 1131 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℝ)
1817recnd 10934 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℂ)
19 simp1l 1195 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝜑)
20 remulcand.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℝ)
2221recnd 10934 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℂ)
2316, 18, 22mulassd 10929 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
24 remulid2 40336 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2521, 24syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐴) = 𝐴)
2614, 23, 253eqtr3d 2786 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
2713oveq1d 7270 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
28 remulcand.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2919, 28syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℝ)
3029recnd 10934 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℂ)
3116, 18, 30mulassd 10929 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
32 remulid2 40336 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
3329, 32syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐵) = 𝐵)
3427, 31, 333eqtr3d 2786 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
3512, 26, 343eqtr3d 2786 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 = 𝐵)
36353exp 1117 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝑥 · 𝐶) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3710, 36syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3837impr 454 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
394, 38rexlimddv 3219 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
40 oveq2 7263 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
4139, 40impbid1 224 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-2 11966  df-3 11967  df-resub 40270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator