Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulcand Structured version   Visualization version   GIF version

Theorem remulcand 42431
Description: Commuted version of remulcan2d 42256 without ax-mulcom 11201. (Contributed by SN, 21-Feb-2024.)
Hypotheses
Ref Expression
remulcand.1 (𝜑𝐴 ∈ ℝ)
remulcand.2 (𝜑𝐵 ∈ ℝ)
remulcand.3 (𝜑𝐶 ∈ ℝ)
remulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
remulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem remulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 remulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 ax-rrecex 11209 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 · 𝑥) = 1)
51adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
65adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝐶 ∈ ℝ)
7 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → 𝑥 ∈ ℝ)
8 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝐶 · 𝑥) = 1)
96, 7, 8remulinvcom 42425 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐶 · 𝑥) = 1) → (𝑥 · 𝐶) = 1)
109ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → (𝑥 · 𝐶) = 1))
11 oveq2 7421 . . . . . . . 8 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
12113ad2ant3 1135 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
13 simp2 1137 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · 𝐶) = 1)
1413oveq1d 7428 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
15 simp1r 1198 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℝ)
1615recnd 11271 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝑥 ∈ ℂ)
1753ad2ant1 1133 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℝ)
1817recnd 11271 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐶 ∈ ℂ)
19 simp1l 1197 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝜑)
20 remulcand.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℝ)
2221recnd 11271 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 ∈ ℂ)
2316, 18, 22mulassd 11266 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
24 remullid 42426 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2521, 24syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐴) = 𝐴)
2614, 23, 253eqtr3d 2777 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
2713oveq1d 7428 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
28 remulcand.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2919, 28syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℝ)
3029recnd 11271 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐵 ∈ ℂ)
3116, 18, 30mulassd 11266 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
32 remullid 42426 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
3329, 32syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (1 · 𝐵) = 𝐵)
3427, 31, 333eqtr3d 2777 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
3512, 26, 343eqtr3d 2777 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 · 𝐶) = 1 ∧ (𝐶 · 𝐴) = (𝐶 · 𝐵)) → 𝐴 = 𝐵)
36353exp 1119 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((𝑥 · 𝐶) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3710, 36syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝐶 · 𝑥) = 1 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)))
3837impr 454 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
394, 38rexlimddv 3148 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
40 oveq2 7421 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
4139, 40impbid1 225 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138   · cmul 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-2 12311  df-3 12312  df-resub 42359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator