| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrecex | Structured version Visualization version GIF version | ||
| Description: Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| Ref | Expression |
|---|---|
| xrecex | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rrecex 11210 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
| 2 | rexmul 13296 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 ·e 𝑥) = (𝐴 · 𝑥)) | |
| 3 | 2 | eqeq1d 2736 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 ·e 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1)) |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → ((𝐴 ·e 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℝ → ((𝐴 ·e 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))) |
| 6 | 5 | pm5.32d 577 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝑥 ∈ ℝ ∧ (𝐴 ·e 𝑥) = 1) ↔ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1))) |
| 7 | 6 | rexbidv2 3162 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
| 8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 (class class class)co 7414 ℝcr 11137 0cc0 11138 1c1 11139 · cmul 11143 ·e cxmu 13136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-xmul 13139 |
| This theorem is referenced by: xmulcand 32850 xreceu 32851 |
| Copyright terms: Public domain | W3C validator |