Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itrere Structured version   Visualization version   GIF version

Theorem itrere 41910
Description: i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025.)
Assertion
Ref Expression
itrere (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem itrere
StepHypRef Expression
1 inelr 12240 . . . . 5 ¬ i ∈ ℝ
2 ax-icn 11205 . . . . . . . . 9 i ∈ ℂ
32a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ)
4 simpll 765 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ)
54recnd 11280 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ)
6 simplr 767 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ≠ 0)
73, 5, 6divcan4d 12034 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) / 𝑅) = i)
8 simpr 483 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ)
98, 4, 6redivcld 12080 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) / 𝑅) ∈ ℝ)
107, 9eqeltrrd 2830 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ)
1110ex 411 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ))
121, 11mtoi 198 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ)
1312ex 411 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ))
1413necon4ad 2956 . 2 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0))
15 oveq2 7434 . . 3 (𝑅 = 0 → (i · 𝑅) = (i · 0))
16 it0e0 12472 . . . 4 (i · 0) = 0
17 0re 11254 . . . 4 0 ∈ ℝ
1816, 17eqeltri 2825 . . 3 (i · 0) ∈ ℝ
1915, 18eqeltrdi 2837 . 2 (𝑅 = 0 → (i · 𝑅) ∈ ℝ)
2014, 19impbid1 224 1 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  ici 11148   · cmul 11151   / cdiv 11909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910
This theorem is referenced by:  retire  41911
  Copyright terms: Public domain W3C validator