![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itrere | Structured version Visualization version GIF version |
Description: i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025.) |
Ref | Expression |
---|---|
itrere | ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelr 12283 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
2 | ax-icn 11243 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
3 | 2 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ) |
4 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ) | |
5 | 4 | recnd 11318 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ) |
6 | simplr 768 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ≠ 0) | |
7 | 3, 5, 6 | divcan4d 12076 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) / 𝑅) = i) |
8 | simpr 484 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ) | |
9 | 8, 4, 6 | redivcld 12122 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) / 𝑅) ∈ ℝ) |
10 | 7, 9 | eqeltrrd 2845 | . . . . . 6 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ) |
11 | 10 | ex 412 | . . . . 5 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ)) |
12 | 1, 11 | mtoi 199 | . . . 4 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ) |
13 | 12 | ex 412 | . . 3 ⊢ (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ)) |
14 | 13 | necon4ad 2965 | . 2 ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0)) |
15 | oveq2 7456 | . . 3 ⊢ (𝑅 = 0 → (i · 𝑅) = (i · 0)) | |
16 | it0e0 12515 | . . . 4 ⊢ (i · 0) = 0 | |
17 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
18 | 16, 17 | eqeltri 2840 | . . 3 ⊢ (i · 0) ∈ ℝ |
19 | 15, 18 | eqeltrdi 2852 | . 2 ⊢ (𝑅 = 0 → (i · 𝑅) ∈ ℝ) |
20 | 14, 19 | impbid1 225 | 1 ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 ici 11186 · cmul 11189 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: retire 42308 |
Copyright terms: Public domain | W3C validator |