| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > remullid | Structured version Visualization version GIF version | ||
| Description: Commuted version of ax-1rid 11098 without ax-mulcom 11092. (Contributed by SN, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| remullid | ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | ax-rrecex 11100 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
| 3 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
| 4 | 3 | recnd 11162 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
| 5 | simprl 770 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
| 6 | 5 | recnd 11162 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
| 7 | 4, 6, 4 | mulassd 11157 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (𝐴 · (𝑥 · 𝐴))) |
| 8 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) = 1) | |
| 9 | 8 | oveq1d 7368 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (1 · 𝐴)) |
| 10 | 3, 5, 8 | remulinvcom 42406 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝑥 · 𝐴) = 1) |
| 11 | 10 | oveq2d 7369 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = (𝐴 · 1)) |
| 12 | ax-1rid 11098 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 13 | 3, 12 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴) |
| 14 | 11, 13 | eqtrd 2764 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = 𝐴) |
| 15 | 7, 9, 14 | 3eqtr3d 2772 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
| 16 | 2, 15 | rexlimddv 3136 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 · 𝐴) = 𝐴) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (1 · 𝐴) = 𝐴)) |
| 18 | 1, 17 | biimtrrid 243 | . 2 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 = 0 → (1 · 𝐴) = 𝐴)) |
| 19 | 1re 11134 | . . . 4 ⊢ 1 ∈ ℝ | |
| 20 | remul01 42380 | . . . 4 ⊢ (1 ∈ ℝ → (1 · 0) = 0) | |
| 21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝐴 = 0 → (1 · 0) = 0) |
| 22 | oveq2 7361 | . . 3 ⊢ (𝐴 = 0 → (1 · 𝐴) = (1 · 0)) | |
| 23 | id 22 | . . 3 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 24 | 21, 22, 23 | 3eqtr4d 2774 | . 2 ⊢ (𝐴 = 0 → (1 · 𝐴) = 𝐴) |
| 25 | 18, 24 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-2 12209 df-3 12210 df-resub 42339 |
| This theorem is referenced by: sn-mullid 42409 remulcand 42412 rediveud 42416 sn-0tie0 42424 mullt0b1d 42456 |
| Copyright terms: Public domain | W3C validator |