![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > remullid | Structured version Visualization version GIF version |
Description: Commuted version of ax-1rid 11184 without ax-mulcom 11178. (Contributed by SN, 5-Feb-2024.) |
Ref | Expression |
---|---|
remullid | ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2940 | . . 3 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | ax-rrecex 11186 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | simpll 764 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
4 | 3 | recnd 11247 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
5 | simprl 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
6 | 5 | recnd 11247 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
7 | 4, 6, 4 | mulassd 11242 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (𝐴 · (𝑥 · 𝐴))) |
8 | simprr 770 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) = 1) | |
9 | 8 | oveq1d 7427 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (1 · 𝐴)) |
10 | 3, 5, 8 | remulinvcom 41608 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝑥 · 𝐴) = 1) |
11 | 10 | oveq2d 7428 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = (𝐴 · 1)) |
12 | ax-1rid 11184 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
13 | 3, 12 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴) |
14 | 11, 13 | eqtrd 2771 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = 𝐴) |
15 | 7, 9, 14 | 3eqtr3d 2779 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
16 | 2, 15 | rexlimddv 3160 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 · 𝐴) = 𝐴) |
17 | 16 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (1 · 𝐴) = 𝐴)) |
18 | 1, 17 | biimtrrid 242 | . 2 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 = 0 → (1 · 𝐴) = 𝐴)) |
19 | 1re 11219 | . . . 4 ⊢ 1 ∈ ℝ | |
20 | remul01 41583 | . . . 4 ⊢ (1 ∈ ℝ → (1 · 0) = 0) | |
21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝐴 = 0 → (1 · 0) = 0) |
22 | oveq2 7420 | . . 3 ⊢ (𝐴 = 0 → (1 · 𝐴) = (1 · 0)) | |
23 | id 22 | . . 3 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
24 | 21, 22, 23 | 3eqtr4d 2781 | . 2 ⊢ (𝐴 = 0 → (1 · 𝐴) = 𝐴) |
25 | 18, 24 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 (class class class)co 7412 ℝcr 11113 0cc0 11114 1c1 11115 · cmul 11119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-2 12280 df-3 12281 df-resub 41542 |
This theorem is referenced by: sn-mullid 41611 remulcand 41614 sn-0tie0 41615 |
Copyright terms: Public domain | W3C validator |