Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axinfprim Structured version   Visualization version   GIF version

Theorem axinfprim 35728
Description: ax-inf 9657 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axinfprim ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))

Proof of Theorem axinfprim
StepHypRef Expression
1 axinfnd 10625 . 2 𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
2 df-an 396 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝑥) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
32exbii 1848 . . . . . . . . . 10 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
4 exnal 1827 . . . . . . . . . 10 (∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
53, 4bitri 275 . . . . . . . . 9 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
65imbi2i 336 . . . . . . . 8 ((𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
76albii 1819 . . . . . . 7 (∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
87anbi2i 623 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
9 df-an 396 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
108, 9bitri 275 . . . . 5 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
1110imbi2i 336 . . . 4 ((𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1211exbii 1848 . . 3 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
13 df-ex 1780 . . 3 (∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1412, 13bitri 275 . 2 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
151, 14mpbi 230 1 ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377  ax-ext 2708  ax-sep 5271  ax-pr 5407  ax-reg 9611  ax-inf 9657
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator