Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axinfprim Structured version   Visualization version   GIF version

Theorem axinfprim 31961
Description: ax-inf 8750 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axinfprim ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))

Proof of Theorem axinfprim
StepHypRef Expression
1 axinfnd 9681 . 2 𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
2 df-an 385 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝑥) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
32exbii 1943 . . . . . . . . . 10 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
4 exnal 1921 . . . . . . . . . 10 (∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
53, 4bitri 266 . . . . . . . . 9 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
65imbi2i 327 . . . . . . . 8 ((𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
76albii 1914 . . . . . . 7 (∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
87anbi2i 616 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
9 df-an 385 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
108, 9bitri 266 . . . . 5 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
1110imbi2i 327 . . . 4 ((𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1211exbii 1943 . . 3 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
13 df-ex 1875 . . 3 (∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1412, 13bitri 266 . 2 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
151, 14mpbi 221 1 ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1650  wex 1874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-reg 8704  ax-inf 8750
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-v 3352  df-dif 3735  df-un 3737  df-nul 4080  df-sn 4335  df-pr 4337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator