Proof of Theorem axacprim
Step | Hyp | Ref
| Expression |
1 | | axacnd 10368 |
. 2
⊢
∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
2 | | df-an 397 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤)) |
3 | 2 | albii 1822 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤)) |
4 | | anass 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ (𝑦 ∈ 𝑧 ∧ (𝑧 ∈ 𝑤 ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
5 | | annim 404 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑤 ∧ ¬ (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)) ↔ ¬ (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) |
6 | | pm4.63 398 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥) ↔ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
7 | 6 | anbi2i 623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑤 ∧ ¬ (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
8 | 5, 7 | bitr3i 276 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
9 | 8 | anbi2i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑧 ∧ ¬ (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) ↔ (𝑦 ∈ 𝑧 ∧ (𝑧 ∈ 𝑤 ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
10 | | annim 404 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑧 ∧ ¬ (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) ↔ ¬ (𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))) |
11 | 4, 9, 10 | 3bitr2i 299 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ¬ (𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))) |
12 | 11 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ∃𝑤 ¬ (𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))) |
13 | | exnal 1829 |
. . . . . . . . . . . 12
⊢
(∃𝑤 ¬
(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) ↔ ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))) |
14 | 12, 13 | bitri 274 |
. . . . . . . . . . 11
⊢
(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))) |
15 | 14 | bibi1i 339 |
. . . . . . . . . 10
⊢
((∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ (¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) ↔ 𝑦 = 𝑤)) |
16 | | dfbi1 212 |
. . . . . . . . . 10
⊢ ((¬
∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
17 | 15, 16 | bitri 274 |
. . . . . . . . 9
⊢
((∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
18 | 17 | albii 1822 |
. . . . . . . 8
⊢
(∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
19 | 18 | exbii 1850 |
. . . . . . 7
⊢
(∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
20 | | df-ex 1783 |
. . . . . . 7
⊢
(∃𝑤∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
21 | 19, 20 | bitri 274 |
. . . . . 6
⊢
(∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |
22 | 3, 21 | imbi12i 351 |
. . . . 5
⊢
((∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))))) |
23 | 22 | 2albii 1823 |
. . . 4
⊢
(∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))))) |
24 | 23 | exbii 1850 |
. . 3
⊢
(∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))))) |
25 | | df-ex 1783 |
. . 3
⊢
(∃𝑥∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) ↔ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))))) |
26 | 24, 25 | bitri 274 |
. 2
⊢
(∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))))))) |
27 | 1, 26 | mpbi 229 |
1
⊢ ¬
∀𝑥 ¬
∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) |