Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axacprim Structured version   Visualization version   GIF version

Theorem axacprim 33648
Description: ax-ac 10215 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.)
Assertion
Ref Expression
axacprim ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))

Proof of Theorem axacprim
StepHypRef Expression
1 axacnd 10368 . 2 𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤))
2 df-an 397 . . . . . . 7 ((𝑦𝑧𝑧𝑤) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
32albii 1822 . . . . . 6 (∀𝑥(𝑦𝑧𝑧𝑤) ↔ ∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
4 anass 469 . . . . . . . . . . . . . 14 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
5 annim 404 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))
6 pm4.63 398 . . . . . . . . . . . . . . . . 17 (¬ (𝑦𝑤 → ¬ 𝑤𝑥) ↔ (𝑦𝑤𝑤𝑥))
76anbi2i 623 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
85, 7bitr3i 276 . . . . . . . . . . . . . . 15 (¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
98anbi2i 623 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
10 annim 404 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
114, 9, 103bitr2i 299 . . . . . . . . . . . . 13 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1211exbii 1850 . . . . . . . . . . . 12 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
13 exnal 1829 . . . . . . . . . . . 12 (∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1412, 13bitri 274 . . . . . . . . . . 11 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1514bibi1i 339 . . . . . . . . . 10 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ (¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤))
16 dfbi1 212 . . . . . . . . . 10 ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1715, 16bitri 274 . . . . . . . . 9 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1817albii 1822 . . . . . . . 8 (∀𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1918exbii 1850 . . . . . . 7 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
20 df-ex 1783 . . . . . . 7 (∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
2119, 20bitri 274 . . . . . 6 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
223, 21imbi12i 351 . . . . 5 ((∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
23222albii 1823 . . . 4 (∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2423exbii 1850 . . 3 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
25 df-ex 1783 . . 3 (∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2624, 25bitri 274 . 2 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
271, 26mpbi 229 1 ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351  ax-ac 10215
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator