Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axacprim Structured version   Visualization version   GIF version

Theorem axacprim 32459
Description: ax-ac 9679 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.)
Assertion
Ref Expression
axacprim ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))

Proof of Theorem axacprim
StepHypRef Expression
1 axacnd 9832 . 2 𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤))
2 df-an 388 . . . . . . 7 ((𝑦𝑧𝑧𝑤) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
32albii 1782 . . . . . 6 (∀𝑥(𝑦𝑧𝑧𝑤) ↔ ∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
4 anass 461 . . . . . . . . . . . . . 14 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
5 annim 395 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))
6 pm4.63 389 . . . . . . . . . . . . . . . . 17 (¬ (𝑦𝑤 → ¬ 𝑤𝑥) ↔ (𝑦𝑤𝑤𝑥))
76anbi2i 613 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
85, 7bitr3i 269 . . . . . . . . . . . . . . 15 (¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
98anbi2i 613 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
10 annim 395 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
114, 9, 103bitr2i 291 . . . . . . . . . . . . 13 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1211exbii 1810 . . . . . . . . . . . 12 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
13 exnal 1789 . . . . . . . . . . . 12 (∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1412, 13bitri 267 . . . . . . . . . . 11 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1514bibi1i 331 . . . . . . . . . 10 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ (¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤))
16 dfbi1 205 . . . . . . . . . 10 ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1715, 16bitri 267 . . . . . . . . 9 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1817albii 1782 . . . . . . . 8 (∀𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1918exbii 1810 . . . . . . 7 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
20 df-ex 1743 . . . . . . 7 (∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
2119, 20bitri 267 . . . . . 6 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
223, 21imbi12i 343 . . . . 5 ((∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
23222albii 1783 . . . 4 (∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2423exbii 1810 . . 3 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
25 df-ex 1743 . . 3 (∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2624, 25bitri 267 . 2 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
271, 26mpbi 222 1 ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505  wex 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-reg 8851  ax-ac 9679
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-eprel 5317  df-fr 5366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator