Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregprim Structured version   Visualization version   GIF version

Theorem axregprim 35727
Description: ax-reg 9611 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axregprim (𝑥𝑦 → ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))

Proof of Theorem axregprim
StepHypRef Expression
1 axregnd 10623 . 2 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
2 df-an 396 . . . 4 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
32exbii 1848 . . 3 (∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ∃𝑥 ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
4 exnal 1827 . . 3 (∃𝑥 ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
53, 4bitri 275 . 2 (∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
61, 5sylib 218 1 (𝑥𝑦 → ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377  ax-ext 2708  ax-sep 5271  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator