| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axregprim | Structured version Visualization version GIF version | ||
| Description: ax-reg 9487 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axregprim | ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axregnd 10504 | . 2 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
| 2 | df-an 396 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| 4 | exnal 1828 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| 6 | 1, 5 | sylib 218 | 1 ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-13 2374 ax-ext 2705 ax-sep 5238 ax-pr 5374 ax-reg 9487 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2725 df-clel 2808 df-nfc 2882 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |