![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axregprim | Structured version Visualization version GIF version |
Description: ax-reg 9582 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
Ref | Expression |
---|---|
axregprim | ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axregnd 10594 | . 2 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
2 | df-an 396 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
3 | 2 | exbii 1842 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥 ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
4 | exnal 1821 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
6 | 1, 5 | sylib 217 | 1 ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2363 ax-ext 2695 ax-sep 5289 ax-pr 5417 ax-reg 9582 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-v 3468 df-un 3945 df-sn 4621 df-pr 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |