Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregprim Structured version   Visualization version   GIF version

Theorem axregprim 35667
Description: ax-reg 9661 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axregprim (𝑥𝑦 → ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))

Proof of Theorem axregprim
StepHypRef Expression
1 axregnd 10673 . 2 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
2 df-an 396 . . . 4 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
32exbii 1846 . . 3 (∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ∃𝑥 ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
4 exnal 1825 . . 3 (∃𝑥 ¬ (𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
53, 4bitri 275 . 2 (∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)) ↔ ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
61, 5sylib 218 1 (𝑥𝑦 → ¬ ∀𝑥(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator