Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axpowprim Structured version   Visualization version   GIF version

Theorem axpowprim 32987
 Description: ax-pow 5253 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axpowprim (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) → 𝑥 = 𝑦)

Proof of Theorem axpowprim
StepHypRef Expression
1 axpownd 10021 . . 3 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
2 df-ex 1782 . . . . . . . . 9 (∃𝑧 𝑥𝑦 ↔ ¬ ∀𝑧 ¬ 𝑥𝑦)
32imbi1i 353 . . . . . . . 8 ((∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) ↔ (¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧))
43albii 1821 . . . . . . 7 (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) ↔ ∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧))
54imbi1i 353 . . . . . 6 ((∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ (∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
65albii 1821 . . . . 5 (∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
76exbii 1849 . . . 4 (∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
8 df-ex 1782 . . . 4 (∃𝑥𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
97, 8bitri 278 . . 3 (∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
101, 9sylib 221 . 2 𝑥 = 𝑦 → ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
1110con4i 114 1 (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) → 𝑥 = 𝑦)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-13 2392  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-reg 9053 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-pw 4524  df-sn 4551  df-pr 4553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator