Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axpowprim Structured version   Visualization version   GIF version

Theorem axpowprim 33944
Description: ax-pow 5308 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axpowprim (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) → 𝑥 = 𝑦)

Proof of Theorem axpowprim
StepHypRef Expression
1 axpownd 10458 . . 3 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
2 df-ex 1781 . . . . . . . . 9 (∃𝑧 𝑥𝑦 ↔ ¬ ∀𝑧 ¬ 𝑥𝑦)
32imbi1i 349 . . . . . . . 8 ((∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) ↔ (¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧))
43albii 1820 . . . . . . 7 (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) ↔ ∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧))
54imbi1i 349 . . . . . 6 ((∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ (∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
65albii 1820 . . . . 5 (∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
76exbii 1849 . . . 4 (∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
8 df-ex 1781 . . . 4 (∃𝑥𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
97, 8bitri 274 . . 3 (∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
101, 9sylib 217 . 2 𝑥 = 𝑦 → ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
1110con4i 114 1 (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-reg 9449
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-pw 4549  df-sn 4574  df-pr 4576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator