| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axpowprim | Structured version Visualization version GIF version | ||
| Description: ax-pow 5328 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axpowprim | ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpownd 10572 | . . 3 ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
| 2 | df-ex 1780 | . . . . . . . . 9 ⊢ (∃𝑧 𝑥 ∈ 𝑦 ↔ ¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦) | |
| 3 | 2 | imbi1i 349 | . . . . . . . 8 ⊢ ((∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) ↔ (¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧)) |
| 4 | 3 | albii 1819 | . . . . . . 7 ⊢ (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) ↔ ∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧)) |
| 5 | 4 | imbi1i 349 | . . . . . 6 ⊢ ((∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 7 | 6 | exbii 1848 | . . . 4 ⊢ (∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 8 | df-ex 1780 | . . . 4 ⊢ (∃𝑥∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 10 | 1, 9 | sylib 218 | . 2 ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 11 | 10 | con4i 114 | 1 ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-reg 9563 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-pw 4573 df-sn 4598 df-pr 4600 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |