| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrabdv | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
| Ref | Expression |
|---|---|
| ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
| 3 | 2 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| 4 | ssrab 4048 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: mndind 18806 symggen 19451 ablfac1eu 20056 lspsolvlem 21103 prdsxmslem2 24468 ovolicc2lem4 25473 abelth2 26404 perfectlem2 27193 umgrres1lem 29289 upgrres1 29292 nsgmgc 33427 nsgqusf1olem2 33429 nsgqusf1olem3 33430 cvmlift2lem11 35335 bj-rabtrAUTO 36950 mapdrvallem3 41665 idomsubgmo 43217 nadd2rabtr 43408 k0004ss2 44176 liminfvalxr 45812 smflimlem4 46803 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |