| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrabdv | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
| Ref | Expression |
|---|---|
| ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
| 3 | 2 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| 4 | ssrab 4018 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: mndind 18731 symggen 19377 ablfac1eu 19982 lspsolvlem 21074 prdsxmslem2 24439 ovolicc2lem4 25443 abelth2 26374 perfectlem2 27163 umgrres1lem 29283 upgrres1 29286 nsgmgc 33369 nsgqusf1olem2 33371 nsgqusf1olem3 33372 cvmlift2lem11 35349 bj-rabtrAUTO 36966 mapdrvallem3 41685 idomsubgmo 43226 nadd2rabtr 43417 k0004ss2 44185 liminfvalxr 45821 smflimlem4 46812 perfectALTVlem2 47753 |
| Copyright terms: Public domain | W3C validator |