MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   GIF version

Theorem ssrabdv 4049
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1 (𝜑𝐵𝐴)
ssrabdv.2 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdv (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2 (𝜑𝐵𝐴)
2 ssrabdv.2 . . 3 ((𝜑𝑥𝐵) → 𝜓)
32ralrimiva 3132 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
4 ssrab 4048 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
51, 3, 4sylanbrc 583 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  {crab 3415  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rab 3416  df-ss 3943
This theorem is referenced by:  mndind  18806  symggen  19451  ablfac1eu  20056  lspsolvlem  21103  prdsxmslem2  24468  ovolicc2lem4  25473  abelth2  26404  perfectlem2  27193  umgrres1lem  29289  upgrres1  29292  nsgmgc  33427  nsgqusf1olem2  33429  nsgqusf1olem3  33430  cvmlift2lem11  35335  bj-rabtrAUTO  36950  mapdrvallem3  41665  idomsubgmo  43217  nadd2rabtr  43408  k0004ss2  44176  liminfvalxr  45812  smflimlem4  46803  perfectALTVlem2  47736
  Copyright terms: Public domain W3C validator