![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrabdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
Ref | Expression |
---|---|
ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
3 | 2 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
4 | ssrab 4068 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
5 | 1, 3, 4 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 {crab 3429 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rab 3430 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: mndind 18779 symggen 19424 ablfac1eu 20029 lspsolvlem 21029 prdsxmslem2 24437 ovolicc2lem4 25448 abelth2 26378 perfectlem2 27162 umgrres1lem 29122 upgrres1 29125 nsgmgc 33122 nsgqusf1olem2 33124 nsgqusf1olem3 33125 cvmlift2lem11 34923 bj-rabtrAUTO 36410 mapdrvallem3 41119 idomsubgmo 42621 nadd2rabtr 42813 k0004ss2 43582 liminfvalxr 45171 smflimlem4 46162 perfectALTVlem2 47062 |
Copyright terms: Public domain | W3C validator |