MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   GIF version

Theorem ssrabdv 3973
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1 (𝜑𝐵𝐴)
ssrabdv.2 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdv (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2 (𝜑𝐵𝐴)
2 ssrabdv.2 . . 3 ((𝜑𝑥𝐵) → 𝜓)
32ralrimiva 3097 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
4 ssrab 3972 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
51, 3, 4sylanbrc 586 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wral 3054  {crab 3058  wss 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rab 3063  df-v 3402  df-in 3860  df-ss 3870
This theorem is referenced by:  mndind  18121  symggen  18729  ablfac1eu  19327  lspsolvlem  20046  prdsxmslem2  23295  ovolicc2lem4  24285  abelth2  25202  perfectlem2  25979  umgrres1lem  27265  upgrres1  27268  nsgmgc  31182  nsgqusf1olem2  31184  nsgqusf1olem3  31185  cvmlift2lem11  32859  bj-rabtrAUTO  34776  mapdrvallem3  39316  idomsubgmo  40636  k0004ss2  41349  liminfvalxr  42907  smflimlem4  43889  perfectALTVlem2  44756
  Copyright terms: Public domain W3C validator