MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   GIF version

Theorem ssrabdv 4069
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1 (𝜑𝐵𝐴)
ssrabdv.2 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdv (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2 (𝜑𝐵𝐴)
2 ssrabdv.2 . . 3 ((𝜑𝑥𝐵) → 𝜓)
32ralrimiva 3143 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
4 ssrab 4068 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
51, 3, 4sylanbrc 582 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wral 3058  {crab 3429  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964
This theorem is referenced by:  mndind  18779  symggen  19424  ablfac1eu  20029  lspsolvlem  21029  prdsxmslem2  24437  ovolicc2lem4  25448  abelth2  26378  perfectlem2  27162  umgrres1lem  29122  upgrres1  29125  nsgmgc  33122  nsgqusf1olem2  33124  nsgqusf1olem3  33125  cvmlift2lem11  34923  bj-rabtrAUTO  36410  mapdrvallem3  41119  idomsubgmo  42621  nadd2rabtr  42813  k0004ss2  43582  liminfvalxr  45171  smflimlem4  46162  perfectALTVlem2  47062
  Copyright terms: Public domain W3C validator