Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   GIF version

Theorem ssrabdv 4054
 Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1 (𝜑𝐵𝐴)
ssrabdv.2 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdv (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2 (𝜑𝐵𝐴)
2 ssrabdv.2 . . 3 ((𝜑𝑥𝐵) → 𝜓)
32ralrimiva 3187 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
4 ssrab 4053 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
51, 3, 4sylanbrc 583 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∈ wcel 2107  ∀wral 3143  {crab 3147   ⊆ wss 3940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rab 3152  df-in 3947  df-ss 3956 This theorem is referenced by:  mndind  17987  symggen  18534  ablfac1eu  19131  lspsolvlem  19850  prdsxmslem2  23073  ovolicc2lem4  24055  abelth2  24964  perfectlem2  25739  umgrres1lem  27025  upgrres1  27028  cvmlift2lem11  32463  bj-rabtrAUTO  34153  mapdrvallem3  38668  idomsubgmo  39682  k0004ss2  40386  liminfvalxr  41948  smflimlem4  42935  perfectALTVlem2  43738
 Copyright terms: Public domain W3C validator