MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   GIF version

Theorem ssrabdv 4027
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1 (𝜑𝐵𝐴)
ssrabdv.2 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdv (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2 (𝜑𝐵𝐴)
2 ssrabdv.2 . . 3 ((𝜑𝑥𝐵) → 𝜓)
32ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
4 ssrab 4026 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
51, 3, 4sylanbrc 583 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  {crab 3396  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3397  df-ss 3922
This theorem is referenced by:  mndind  18721  symggen  19368  ablfac1eu  19973  lspsolvlem  21068  prdsxmslem2  24434  ovolicc2lem4  25438  abelth2  26369  perfectlem2  27158  umgrres1lem  29274  upgrres1  29277  nsgmgc  33368  nsgqusf1olem2  33370  nsgqusf1olem3  33371  cvmlift2lem11  35305  bj-rabtrAUTO  36925  mapdrvallem3  41645  idomsubgmo  43186  nadd2rabtr  43377  k0004ss2  44145  liminfvalxr  45784  smflimlem4  46775  perfectALTVlem2  47726
  Copyright terms: Public domain W3C validator