![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrabdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
Ref | Expression |
---|---|
ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
3 | 2 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
4 | ssrab 4096 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
5 | 1, 3, 4 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: mndind 18863 symggen 19512 ablfac1eu 20117 lspsolvlem 21167 prdsxmslem2 24563 ovolicc2lem4 25574 abelth2 26504 perfectlem2 27292 umgrres1lem 29345 upgrres1 29348 nsgmgc 33405 nsgqusf1olem2 33407 nsgqusf1olem3 33408 cvmlift2lem11 35281 bj-rabtrAUTO 36898 mapdrvallem3 41603 idomsubgmo 43154 nadd2rabtr 43346 k0004ss2 44114 liminfvalxr 45704 smflimlem4 46695 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |