MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1g Structured version   Visualization version   GIF version

Theorem sbcel1g 4439
Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12 4434 . 2 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3940 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eleq2d 2830 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐶))
41, 3bitrid 283 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-nul 4353
This theorem is referenced by:  rspcsbela  4461  csbopg  4915  fprodcllemf  16006  wunnat  18024  wunnatOLD  18025  catcfuccl  18186  catcfucclOLD  18187  esumpfinvalf  34040  esum2dlem  34056  measiuns  34181  bj-sbel1  36871  csbfinxpg  37354  finixpnum  37565  renegclALT  38919  cdlemk35s  40894  ellimcabssub0  45538
  Copyright terms: Public domain W3C validator