| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcel1g | Structured version Visualization version GIF version | ||
| Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcel1g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 4361 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3869 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 3 | 2 | eleq2d 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: rspcsbela 4388 csbopg 4843 fprodcllemf 15865 wunnat 17866 catcfuccl 18025 esumpfinvalf 34087 esum2dlem 34103 measiuns 34228 bj-sbel1 36945 csbfinxpg 37428 finixpnum 37651 renegclALT 39008 cdlemk35s 40982 ellimcabssub0 45663 |
| Copyright terms: Public domain | W3C validator |