MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1g Structured version   Visualization version   GIF version

Theorem sbcel1g 4405
Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12 4400 . 2 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3904 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eleq2d 2811 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐶))
41, 3bitrid 283 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  [wsbc 3769  csb 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-nul 4315
This theorem is referenced by:  rspcsbela  4427  csbopg  4883  fprodcllemf  15899  wunnat  17909  wunnatOLD  17910  catcfuccl  18071  catcfucclOLD  18072  esumpfinvalf  33563  esum2dlem  33579  measiuns  33704  bj-sbel1  36275  csbfinxpg  36759  finixpnum  36963  renegclALT  38323  cdlemk35s  40298  ellimcabssub0  44818
  Copyright terms: Public domain W3C validator