MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1g Structured version   Visualization version   GIF version

Theorem sbcel1g 4347
Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12 4342 . 2 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3851 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eleq2d 2824 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐶))
41, 3bitrid 282 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-nul 4257
This theorem is referenced by:  rspcsbela  4369  csbopg  4822  fprodcllemf  15668  wunnat  17672  wunnatOLD  17673  catcfuccl  17834  catcfucclOLD  17835  esumpfinvalf  32044  esum2dlem  32060  measiuns  32185  bj-sbel1  35090  csbfinxpg  35559  finixpnum  35762  renegclALT  36977  cdlemk35s  38951  ellimcabssub0  43158
  Copyright terms: Public domain W3C validator