MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1g Structured version   Visualization version   GIF version

Theorem sbcel1g 4344
Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12 4339 . 2 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2 csbconstg 3847 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eleq2d 2824 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐶))
41, 3syl5bb 282 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-nul 4254
This theorem is referenced by:  rspcsbela  4366  csbopg  4819  fprodcllemf  15596  wunnat  17588  wunnatOLD  17589  catcfuccl  17750  catcfucclOLD  17751  esumpfinvalf  31944  esum2dlem  31960  measiuns  32085  bj-sbel1  35017  csbfinxpg  35486  finixpnum  35689  renegclALT  36904  cdlemk35s  38878  ellimcabssub0  43048
  Copyright terms: Public domain W3C validator