|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcel1g | Structured version Visualization version GIF version | ||
| Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.) | 
| Ref | Expression | 
|---|---|
| sbcel1g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcel12 4410 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3917 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 3 | 2 | eleq2d 2826 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | 
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 [wsbc 3787 ⦋csb 3898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-nul 4333 | 
| This theorem is referenced by: rspcsbela 4437 csbopg 4890 fprodcllemf 15995 wunnat 18005 catcfuccl 18164 esumpfinvalf 34078 esum2dlem 34094 measiuns 34219 bj-sbel1 36907 csbfinxpg 37390 finixpnum 37613 renegclALT 38965 cdlemk35s 40940 ellimcabssub0 45637 | 
| Copyright terms: Public domain | W3C validator |