Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrdi | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2839 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Copyright terms: Public domain | W3C validator |