Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglinv Structured version   Visualization version   GIF version

Theorem bj-snglinv 36967
Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglinv 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-snglinv
StepHypRef Expression
1 bj-snglc 36964 . 2 (𝑥𝐴 ↔ {𝑥} ∈ sngl 𝐴)
21eqabi 2877 1 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2714  {csn 4634  sngl bj-csngl 36960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-v 3483  df-un 3971  df-sn 4635  df-pr 4637  df-bj-sngl 36961
This theorem is referenced by:  bj-snglex  36968  bj-taginv  36981
  Copyright terms: Public domain W3C validator