Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglinv Structured version   Visualization version   GIF version

Theorem bj-snglinv 35848
Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglinv 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-snglinv
StepHypRef Expression
1 bj-snglc 35845 . 2 (𝑥𝐴 ↔ {𝑥} ∈ sngl 𝐴)
21eqabi 2869 1 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2709  {csn 4628  sngl bj-csngl 35841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-v 3476  df-un 3953  df-sn 4629  df-pr 4631  df-bj-sngl 35842
This theorem is referenced by:  bj-snglex  35849  bj-taginv  35862
  Copyright terms: Public domain W3C validator