| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglinv | Structured version Visualization version GIF version | ||
| Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglinv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglc 36929 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ∈ sngl 𝐴) | |
| 2 | 1 | eqabi 2869 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2712 {csn 4606 sngl bj-csngl 36925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-v 3465 df-un 3936 df-sn 4607 df-pr 4609 df-bj-sngl 36926 |
| This theorem is referenced by: bj-snglex 36933 bj-taginv 36946 |
| Copyright terms: Public domain | W3C validator |