Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglinv Structured version   Visualization version   GIF version

Theorem bj-snglinv 36360
Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglinv 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-snglinv
StepHypRef Expression
1 bj-snglc 36357 . 2 (𝑥𝐴 ↔ {𝑥} ∈ sngl 𝐴)
21eqabi 2863 1 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cab 2703  {csn 4623  sngl bj-csngl 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rex 3065  df-v 3470  df-un 3948  df-sn 4624  df-pr 4626  df-bj-sngl 36354
This theorem is referenced by:  bj-snglex  36361  bj-taginv  36374
  Copyright terms: Public domain W3C validator