| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglinv | Structured version Visualization version GIF version | ||
| Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglinv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglc 37013 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ∈ sngl 𝐴) | |
| 2 | 1 | eqabi 2866 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 {csn 4573 sngl bj-csngl 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-bj-sngl 37010 |
| This theorem is referenced by: bj-snglex 37017 bj-taginv 37030 |
| Copyright terms: Public domain | W3C validator |