| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-taginv | Structured version Visualization version GIF version | ||
| Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-taginv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglinv 36955 | . 2 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | |
| 2 | bj-sngltag 36966 | . . . 4 ⊢ (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)) | |
| 3 | 2 | elv 3455 | . . 3 ⊢ ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴) |
| 4 | 3 | abbii 2797 | . 2 ⊢ {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
| 5 | 1, 4 | eqtri 2753 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 {csn 4591 sngl bj-csngl 36948 tag bj-ctag 36957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-sn 4592 df-pr 4594 df-bj-sngl 36949 df-bj-tag 36958 |
| This theorem is referenced by: bj-projval 36979 |
| Copyright terms: Public domain | W3C validator |