Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-taginv Structured version   Visualization version   GIF version

Theorem bj-taginv 35176
Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-taginv 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-taginv
StepHypRef Expression
1 bj-snglinv 35162 . 2 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
2 bj-sngltag 35173 . . . 4 (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴))
32elv 3438 . . 3 ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)
43abbii 2808 . 2 {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
51, 4eqtri 2766 1 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  {csn 4561  sngl bj-csngl 35155  tag bj-ctag 35164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-bj-sngl 35156  df-bj-tag 35165
This theorem is referenced by:  bj-projval  35186
  Copyright terms: Public domain W3C validator