![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-taginv | Structured version Visualization version GIF version |
Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-taginv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglinv 36940 | . 2 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | |
2 | bj-sngltag 36951 | . . . 4 ⊢ (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)) | |
3 | 2 | elv 3493 | . . 3 ⊢ ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴) |
4 | 3 | abbii 2812 | . 2 ⊢ {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
5 | 1, 4 | eqtri 2768 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 {csn 4648 sngl bj-csngl 36933 tag bj-ctag 36942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-bj-sngl 36934 df-bj-tag 36943 |
This theorem is referenced by: bj-projval 36964 |
Copyright terms: Public domain | W3C validator |