Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-taginv Structured version   Visualization version   GIF version

Theorem bj-taginv 35867
Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-taginv 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-taginv
StepHypRef Expression
1 bj-snglinv 35853 . 2 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
2 bj-sngltag 35864 . . . 4 (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴))
32elv 3481 . . 3 ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)
43abbii 2803 . 2 {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
51, 4eqtri 2761 1 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  {csn 4629  sngl bj-csngl 35846  tag bj-ctag 35855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-pr 4632  df-bj-sngl 35847  df-bj-tag 35856
This theorem is referenced by:  bj-projval  35877
  Copyright terms: Public domain W3C validator