![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-taginv | Structured version Visualization version GIF version |
Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-taginv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglinv 36967 | . 2 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | |
2 | bj-sngltag 36978 | . . . 4 ⊢ (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)) | |
3 | 2 | elv 3486 | . . 3 ⊢ ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
5 | 1, 4 | eqtri 2765 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2108 {cab 2714 Vcvv 3481 {csn 4634 sngl bj-csngl 36960 tag bj-ctag 36969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-sn 4635 df-pr 4637 df-bj-sngl 36961 df-bj-tag 36970 |
This theorem is referenced by: bj-projval 36991 |
Copyright terms: Public domain | W3C validator |