![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglex | Structured version Visualization version GIF version |
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglex | ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3502 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | pweq 4636 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
3 | 2 | eximi 1833 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴) |
4 | bj-snglss 36936 | . . . . . 6 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
5 | sseq2 4035 | . . . . . 6 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴)) | |
6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥) |
7 | 6 | eximi 1833 | . . . 4 ⊢ (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥) |
8 | vpwex 5395 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V | |
9 | 8 | ssex 5339 | . . . . 5 ⊢ (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
10 | 9 | exlimiv 1929 | . . . 4 ⊢ (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
11 | 3, 7, 10 | 3syl 18 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V) |
12 | 1, 11 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → sngl 𝐴 ∈ V) |
13 | bj-snglinv 36938 | . . 3 ⊢ 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴} | |
14 | bj-snsetex 36929 | . . 3 ⊢ (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V) | |
15 | 13, 14 | eqeltrid 2848 | . 2 ⊢ (sngl 𝐴 ∈ V → 𝐴 ∈ V) |
16 | 12, 15 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 sngl bj-csngl 36931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 df-bj-sngl 36932 |
This theorem is referenced by: bj-tagex 36953 |
Copyright terms: Public domain | W3C validator |