Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglex Structured version   Visualization version   GIF version

Theorem bj-snglex 35159
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglex (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)

Proof of Theorem bj-snglex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isset 3444 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 pweq 4555 . . . . 5 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
32eximi 1841 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴)
4 bj-snglss 35156 . . . . . 6 sngl 𝐴 ⊆ 𝒫 𝐴
5 sseq2 3952 . . . . . 6 (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴))
64, 5mpbiri 257 . . . . 5 (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥)
76eximi 1841 . . . 4 (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥)
8 vpwex 5304 . . . . . 6 𝒫 𝑥 ∈ V
98ssex 5249 . . . . 5 (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
109exlimiv 1937 . . . 4 (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
113, 7, 103syl 18 . . 3 (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V)
121, 11sylbi 216 . 2 (𝐴 ∈ V → sngl 𝐴 ∈ V)
13 bj-snglinv 35158 . . 3 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴}
14 bj-snsetex 35149 . . 3 (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V)
1513, 14eqeltrid 2845 . 2 (sngl 𝐴 ∈ V → 𝐴 ∈ V)
1612, 15impbii 208 1 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wex 1786  wcel 2110  {cab 2717  Vcvv 3431  wss 3892  𝒫 cpw 4539  {csn 4567  sngl bj-csngl 35151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-sn 4568  df-pr 4570  df-bj-sngl 35152
This theorem is referenced by:  bj-tagex  35173
  Copyright terms: Public domain W3C validator