Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglex Structured version   Visualization version   GIF version

Theorem bj-snglex 36158
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglex (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)

Proof of Theorem bj-snglex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isset 3486 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 pweq 4617 . . . . 5 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
32eximi 1836 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴)
4 bj-snglss 36155 . . . . . 6 sngl 𝐴 ⊆ 𝒫 𝐴
5 sseq2 4009 . . . . . 6 (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴))
64, 5mpbiri 257 . . . . 5 (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥)
76eximi 1836 . . . 4 (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥)
8 vpwex 5376 . . . . . 6 𝒫 𝑥 ∈ V
98ssex 5322 . . . . 5 (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
109exlimiv 1932 . . . 4 (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
113, 7, 103syl 18 . . 3 (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V)
121, 11sylbi 216 . 2 (𝐴 ∈ V → sngl 𝐴 ∈ V)
13 bj-snglinv 36157 . . 3 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴}
14 bj-snsetex 36148 . . 3 (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V)
1513, 14eqeltrid 2836 . 2 (sngl 𝐴 ∈ V → 𝐴 ∈ V)
1612, 15impbii 208 1 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wex 1780  wcel 2105  {cab 2708  Vcvv 3473  wss 3949  𝒫 cpw 4603  {csn 4629  sngl bj-csngl 36150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-pw 4605  df-sn 4630  df-pr 4632  df-bj-sngl 36151
This theorem is referenced by:  bj-tagex  36172
  Copyright terms: Public domain W3C validator