Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglex | Structured version Visualization version GIF version |
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglex | ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3450 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | pweq 4553 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
3 | 2 | eximi 1835 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴) |
4 | bj-snglss 35208 | . . . . . 6 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
5 | sseq2 3952 | . . . . . 6 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴)) | |
6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥) |
7 | 6 | eximi 1835 | . . . 4 ⊢ (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥) |
8 | vpwex 5309 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V | |
9 | 8 | ssex 5254 | . . . . 5 ⊢ (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
10 | 9 | exlimiv 1931 | . . . 4 ⊢ (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
11 | 3, 7, 10 | 3syl 18 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V) |
12 | 1, 11 | sylbi 216 | . 2 ⊢ (𝐴 ∈ V → sngl 𝐴 ∈ V) |
13 | bj-snglinv 35210 | . . 3 ⊢ 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴} | |
14 | bj-snsetex 35201 | . . 3 ⊢ (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V) | |
15 | 13, 14 | eqeltrid 2841 | . 2 ⊢ (sngl 𝐴 ∈ V → 𝐴 ∈ V) |
16 | 12, 15 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 {csn 4565 sngl bj-csngl 35203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4566 df-pr 4568 df-bj-sngl 35204 |
This theorem is referenced by: bj-tagex 35225 |
Copyright terms: Public domain | W3C validator |