| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglex | Structured version Visualization version GIF version | ||
| Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglex | ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3450 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | pweq 4561 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 3 | 2 | eximi 1836 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴) |
| 4 | bj-snglss 37014 | . . . . . 6 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
| 5 | sseq2 3956 | . . . . . 6 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥) |
| 7 | 6 | eximi 1836 | . . . 4 ⊢ (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥) |
| 8 | vpwex 5313 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V | |
| 9 | 8 | ssex 5257 | . . . . 5 ⊢ (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
| 10 | 9 | exlimiv 1931 | . . . 4 ⊢ (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V) |
| 11 | 3, 7, 10 | 3syl 18 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V) |
| 12 | 1, 11 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → sngl 𝐴 ∈ V) |
| 13 | bj-snglinv 37016 | . . 3 ⊢ 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴} | |
| 14 | bj-snsetex 37007 | . . 3 ⊢ (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V) | |
| 15 | 13, 14 | eqeltrid 2835 | . 2 ⊢ (sngl 𝐴 ∈ V → 𝐴 ∈ V) |
| 16 | 12, 15 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 sngl bj-csngl 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-bj-sngl 37010 |
| This theorem is referenced by: bj-tagex 37031 |
| Copyright terms: Public domain | W3C validator |