Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 36937
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8522). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑥 ∈ V
21snnz 4801 . . . . 5 {𝑥} ≠ ∅
32nesymi 3004 . . . 4 ¬ ∅ = {𝑥}
43nex 1798 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 36934 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3082 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 217 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 197 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 3055 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1777  wcel 2108  wnel 3052  wrex 3076  c0 4352  {csn 4648  sngl bj-csngl 36931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-bj-sngl 36932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator