Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 36156
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8470). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3477 . . . . . 6 𝑥 ∈ V
21snnz 4780 . . . . 5 {𝑥} ≠ ∅
32nesymi 2997 . . . 4 ¬ ∅ = {𝑥}
43nex 1801 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 36153 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3075 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 216 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 196 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 3048 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1780  wcel 2105  wnel 3045  wrex 3069  c0 4322  {csn 4628  sngl bj-csngl 36150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-nel 3046  df-rex 3070  df-v 3475  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631  df-bj-sngl 36151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator