| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8385). (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snnz 4726 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
| 3 | 2 | nesymi 2985 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
| 4 | 3 | nex 1801 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
| 5 | bj-elsngl 37012 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
| 6 | rexex 3062 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
| 7 | 5, 6 | sylbi 217 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
| 8 | 4, 7 | mto 197 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
| 9 | 8 | nelir 3035 | 1 ⊢ ∅ ∉ sngl 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∉ wnel 3032 ∃wrex 3056 ∅c0 4280 {csn 4573 sngl bj-csngl 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rex 3057 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 df-bj-sngl 37010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |