Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 35161
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8297). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . . 6 𝑥 ∈ V
21snnz 4712 . . . . 5 {𝑥} ≠ ∅
32nesymi 3001 . . . 4 ¬ ∅ = {𝑥}
43nex 1803 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 35158 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3171 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 216 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 196 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 3052 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  wcel 2106  wnel 3049  wrex 3065  c0 4256  {csn 4561  sngl bj-csngl 35155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564  df-bj-sngl 35156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator