![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version |
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8505). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snnz 4781 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
3 | 2 | nesymi 2996 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
4 | 3 | nex 1797 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
5 | bj-elsngl 36951 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
6 | rexex 3074 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
7 | 5, 6 | sylbi 217 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
8 | 4, 7 | mto 197 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
9 | 8 | nelir 3047 | 1 ⊢ ∅ ∉ sngl 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∉ wnel 3044 ∃wrex 3068 ∅c0 4339 {csn 4631 sngl bj-csngl 36948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-rex 3069 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 df-bj-sngl 36949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |