| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8434). (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snnz 4740 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
| 3 | 2 | nesymi 2982 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
| 4 | 3 | nex 1800 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
| 5 | bj-elsngl 36956 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
| 6 | rexex 3059 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
| 7 | 5, 6 | sylbi 217 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
| 8 | 4, 7 | mto 197 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
| 9 | 8 | nelir 3032 | 1 ⊢ ∅ ∉ sngl 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3029 ∃wrex 3053 ∅c0 4296 {csn 4589 sngl bj-csngl 36953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-rex 3054 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-pr 4592 df-bj-sngl 36954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |