![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version |
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8522). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snnz 4801 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
3 | 2 | nesymi 3004 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
4 | 3 | nex 1798 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
5 | bj-elsngl 36934 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
6 | rexex 3082 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
7 | 5, 6 | sylbi 217 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
8 | 4, 7 | mto 197 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
9 | 8 | nelir 3055 | 1 ⊢ ∅ ∉ sngl 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∉ wnel 3052 ∃wrex 3076 ∅c0 4352 {csn 4648 sngl bj-csngl 36931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-bj-sngl 36932 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |