Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version |
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8297). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snnz 4712 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
3 | 2 | nesymi 3001 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
4 | 3 | nex 1803 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
5 | bj-elsngl 35158 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
6 | rexex 3171 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
7 | 5, 6 | sylbi 216 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
8 | 4, 7 | mto 196 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
9 | 8 | nelir 3052 | 1 ⊢ ∅ ∉ sngl 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∉ wnel 3049 ∃wrex 3065 ∅c0 4256 {csn 4561 sngl bj-csngl 35155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 df-bj-sngl 35156 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |