Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 36959
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8434). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . . 6 𝑥 ∈ V
21snnz 4740 . . . . 5 {𝑥} ≠ ∅
32nesymi 2982 . . . 4 ¬ ∅ = {𝑥}
43nex 1800 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 36956 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3059 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 217 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 197 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 3032 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  wnel 3029  wrex 3053  c0 4296  {csn 4589  sngl bj-csngl 36953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-rex 3054  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-sn 4590  df-pr 4592  df-bj-sngl 36954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator