Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 36954
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8505). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑥 ∈ V
21snnz 4781 . . . . 5 {𝑥} ≠ ∅
32nesymi 2996 . . . 4 ¬ ∅ = {𝑥}
43nex 1797 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 36951 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3074 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 217 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 197 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 3047 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1776  wcel 2106  wnel 3044  wrex 3068  c0 4339  {csn 4631  sngl bj-csngl 36948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-nel 3045  df-rex 3069  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-pr 4634  df-bj-sngl 36949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator