| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version | ||
| Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8485). (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snnz 4757 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
| 3 | 2 | nesymi 2990 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
| 4 | 3 | nex 1800 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
| 5 | bj-elsngl 36991 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
| 6 | rexex 3067 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
| 7 | 5, 6 | sylbi 217 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
| 8 | 4, 7 | mto 197 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
| 9 | 8 | nelir 3040 | 1 ⊢ ∅ ∉ sngl 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3037 ∃wrex 3061 ∅c0 4313 {csn 4606 sngl bj-csngl 36988 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 df-bj-sngl 36989 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |