| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglc | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglc | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ 𝐵 {𝐴} = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) | |
| 2 | bj-elsngl 36928 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 {𝐴} = {𝑥}) | |
| 3 | elisset 2815 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | 3 | pm4.71i 559 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 𝑥 = 𝐴)) |
| 5 | 19.42v 1952 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 𝑥 = 𝐴)) | |
| 6 | eleq1 2821 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 7 | 6 | eqcoms 2742 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 8 | 7 | pm5.32ri 575 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
| 9 | 8 | exbii 1847 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
| 10 | 4, 5, 9 | 3bitr2i 299 | . . 3 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
| 11 | sneqbg 4823 | . . . . . . 7 ⊢ (𝑥 ∈ V → ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)) | |
| 12 | 11 | elv 3468 | . . . . . 6 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
| 13 | eqcom 2741 | . . . . . 6 ⊢ ({𝑥} = {𝐴} ↔ {𝐴} = {𝑥}) | |
| 14 | 12, 13 | bitr3i 277 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ {𝐴} = {𝑥}) |
| 15 | 14 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
| 16 | 15 | exbii 1847 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
| 17 | 10, 16 | bitri 275 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
| 18 | 1, 2, 17 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 Vcvv 3463 {csn 4606 sngl bj-csngl 36925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-v 3465 df-un 3936 df-sn 4607 df-pr 4609 df-bj-sngl 36926 |
| This theorem is referenced by: bj-snglinv 36932 bj-tagci 36944 bj-tagcg 36945 |
| Copyright terms: Public domain | W3C validator |