Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglc | Structured version Visualization version GIF version |
Description: Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglc | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 {𝐴} = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) | |
2 | bj-elsngl 35085 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 {𝐴} = {𝑥}) | |
3 | elisset 2820 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
4 | 3 | pm4.71i 559 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 𝑥 = 𝐴)) |
5 | 19.42v 1958 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 𝑥 = 𝐴)) | |
6 | eleq1 2826 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
7 | 6 | eqcoms 2746 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
8 | 7 | pm5.32ri 575 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
9 | 8 | exbii 1851 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
10 | 4, 5, 9 | 3bitr2i 298 | . . 3 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
11 | sneqbg 4771 | . . . . . . 7 ⊢ (𝑥 ∈ V → ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)) | |
12 | 11 | elv 3428 | . . . . . 6 ⊢ ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴) |
13 | eqcom 2745 | . . . . . 6 ⊢ ({𝑥} = {𝐴} ↔ {𝐴} = {𝑥}) | |
14 | 12, 13 | bitr3i 276 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ {𝐴} = {𝑥}) |
15 | 14 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
16 | 15 | exbii 1851 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
17 | 10, 16 | bitri 274 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ {𝐴} = {𝑥})) |
18 | 1, 2, 17 | 3bitr4ri 303 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 {csn 4558 sngl bj-csngl 35082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-bj-sngl 35083 |
This theorem is referenced by: bj-snglinv 35089 bj-tagci 35101 bj-tagcg 35102 |
Copyright terms: Public domain | W3C validator |