Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglc Structured version   Visualization version   GIF version

Theorem bj-snglc 35086
Description: Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglc (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)

Proof of Theorem bj-snglc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3069 . 2 (∃𝑥𝐵 {𝐴} = {𝑥} ↔ ∃𝑥(𝑥𝐵 ∧ {𝐴} = {𝑥}))
2 bj-elsngl 35085 . 2 ({𝐴} ∈ sngl 𝐵 ↔ ∃𝑥𝐵 {𝐴} = {𝑥})
3 elisset 2820 . . . . 5 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
43pm4.71i 559 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∃𝑥 𝑥 = 𝐴))
5 19.42v 1958 . . . 4 (∃𝑥(𝐴𝐵𝑥 = 𝐴) ↔ (𝐴𝐵 ∧ ∃𝑥 𝑥 = 𝐴))
6 eleq1 2826 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐵𝑥𝐵))
76eqcoms 2746 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝐵𝑥𝐵))
87pm5.32ri 575 . . . . 5 ((𝐴𝐵𝑥 = 𝐴) ↔ (𝑥𝐵𝑥 = 𝐴))
98exbii 1851 . . . 4 (∃𝑥(𝐴𝐵𝑥 = 𝐴) ↔ ∃𝑥(𝑥𝐵𝑥 = 𝐴))
104, 5, 93bitr2i 298 . . 3 (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵𝑥 = 𝐴))
11 sneqbg 4771 . . . . . . 7 (𝑥 ∈ V → ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴))
1211elv 3428 . . . . . 6 ({𝑥} = {𝐴} ↔ 𝑥 = 𝐴)
13 eqcom 2745 . . . . . 6 ({𝑥} = {𝐴} ↔ {𝐴} = {𝑥})
1412, 13bitr3i 276 . . . . 5 (𝑥 = 𝐴 ↔ {𝐴} = {𝑥})
1514anbi2i 622 . . . 4 ((𝑥𝐵𝑥 = 𝐴) ↔ (𝑥𝐵 ∧ {𝐴} = {𝑥}))
1615exbii 1851 . . 3 (∃𝑥(𝑥𝐵𝑥 = 𝐴) ↔ ∃𝑥(𝑥𝐵 ∧ {𝐴} = {𝑥}))
1710, 16bitri 274 . 2 (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵 ∧ {𝐴} = {𝑥}))
181, 2, 173bitr4ri 303 1 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  {csn 4558  sngl bj-csngl 35082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561  df-bj-sngl 35083
This theorem is referenced by:  bj-snglinv  35089  bj-tagci  35101  bj-tagcg  35102
  Copyright terms: Public domain W3C validator