Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtagex | Structured version Visualization version GIF version |
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtagex | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
2 | bj-tagex 35177 | . . 3 ⊢ (𝐵 ∈ V ↔ tag 𝐵 ∈ V) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐵 ∈ 𝑊 → tag 𝐵 ∈ V) |
4 | bj-xpexg2 35150 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V)) | |
5 | 3, 4 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 × cxp 5587 tag bj-ctag 35164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5137 df-xp 5595 df-rel 5596 df-bj-sngl 35156 df-bj-tag 35165 |
This theorem is referenced by: bj-1uplex 35198 bj-2uplex 35212 |
Copyright terms: Public domain | W3C validator |