![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtagex | Structured version Visualization version GIF version |
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtagex | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3433 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
2 | bj-tagex 33823 | . . 3 ⊢ (𝐵 ∈ V ↔ tag 𝐵 ∈ V) | |
3 | 1, 2 | sylib 210 | . 2 ⊢ (𝐵 ∈ 𝑊 → tag 𝐵 ∈ V) |
4 | bj-xpexg2 33774 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V)) | |
5 | 3, 4 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 Vcvv 3415 × cxp 5405 tag bj-ctag 33810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-opab 4992 df-xp 5413 df-rel 5414 df-bj-sngl 33802 df-bj-tag 33811 |
This theorem is referenced by: bj-1uplex 33844 bj-2uplex 33858 |
Copyright terms: Public domain | W3C validator |