| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtagex | Structured version Visualization version GIF version | ||
| Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xtagex | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 2 | bj-tagex 37010 | . . 3 ⊢ (𝐵 ∈ V ↔ tag 𝐵 ∈ V) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐵 ∈ 𝑊 → tag 𝐵 ∈ V) |
| 4 | bj-xpexg2 36983 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V)) | |
| 5 | 3, 4 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 × cxp 5657 tag bj-ctag 36997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-opab 5187 df-xp 5665 df-rel 5666 df-bj-sngl 36989 df-bj-tag 36998 |
| This theorem is referenced by: bj-1uplex 37031 bj-2uplex 37045 |
| Copyright terms: Public domain | W3C validator |