| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtagex | Structured version Visualization version GIF version | ||
| Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xtagex | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 2 | bj-tagex 36968 | . . 3 ⊢ (𝐵 ∈ V ↔ tag 𝐵 ∈ V) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐵 ∈ 𝑊 → tag 𝐵 ∈ V) |
| 4 | bj-xpexg2 36941 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V)) | |
| 5 | 3, 4 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 × cxp 5629 tag bj-ctag 36955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-opab 5165 df-xp 5637 df-rel 5638 df-bj-sngl 36947 df-bj-tag 36956 |
| This theorem is referenced by: bj-1uplex 36989 bj-2uplex 37003 |
| Copyright terms: Public domain | W3C validator |