Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xtagex Structured version   Visualization version   GIF version

Theorem bj-xtagex 36977
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xtagex (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))

Proof of Theorem bj-xtagex
StepHypRef Expression
1 elex 3468 . . 3 (𝐵𝑊𝐵 ∈ V)
2 bj-tagex 36975 . . 3 (𝐵 ∈ V ↔ tag 𝐵 ∈ V)
31, 2sylib 218 . 2 (𝐵𝑊 → tag 𝐵 ∈ V)
4 bj-xpexg2 36948 . 2 (𝐴𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V))
53, 4syl5 34 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447   × cxp 5636  tag bj-ctag 36962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-opab 5170  df-xp 5644  df-rel 5645  df-bj-sngl 36954  df-bj-tag 36963
This theorem is referenced by:  bj-1uplex  36996  bj-2uplex  37010
  Copyright terms: Public domain W3C validator