Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xtagex Structured version   Visualization version   GIF version

Theorem bj-xtagex 33825
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xtagex (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))

Proof of Theorem bj-xtagex
StepHypRef Expression
1 elex 3433 . . 3 (𝐵𝑊𝐵 ∈ V)
2 bj-tagex 33823 . . 3 (𝐵 ∈ V ↔ tag 𝐵 ∈ V)
31, 2sylib 210 . 2 (𝐵𝑊 → tag 𝐵 ∈ V)
4 bj-xpexg2 33774 . 2 (𝐴𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V))
53, 4syl5 34 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2050  Vcvv 3415   × cxp 5405  tag bj-ctag 33810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-opab 4992  df-xp 5413  df-rel 5414  df-bj-sngl 33802  df-bj-tag 33811
This theorem is referenced by:  bj-1uplex  33844  bj-2uplex  33858
  Copyright terms: Public domain W3C validator