Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtagex | Structured version Visualization version GIF version |
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtagex | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
2 | bj-tagex 35104 | . . 3 ⊢ (𝐵 ∈ V ↔ tag 𝐵 ∈ V) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐵 ∈ 𝑊 → tag 𝐵 ∈ V) |
4 | bj-xpexg2 35077 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V)) | |
5 | 3, 4 | syl5 34 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 × cxp 5578 tag bj-ctag 35091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 df-rel 5587 df-bj-sngl 35083 df-bj-tag 35092 |
This theorem is referenced by: bj-1uplex 35125 bj-2uplex 35139 |
Copyright terms: Public domain | W3C validator |