Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xtagex Structured version   Visualization version   GIF version

Theorem bj-xtagex 35858
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xtagex (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))

Proof of Theorem bj-xtagex
StepHypRef Expression
1 elex 3492 . . 3 (𝐵𝑊𝐵 ∈ V)
2 bj-tagex 35856 . . 3 (𝐵 ∈ V ↔ tag 𝐵 ∈ V)
31, 2sylib 217 . 2 (𝐵𝑊 → tag 𝐵 ∈ V)
4 bj-xpexg2 35829 . 2 (𝐴𝑉 → (tag 𝐵 ∈ V → (𝐴 × tag 𝐵) ∈ V))
53, 4syl5 34 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474   × cxp 5673  tag bj-ctag 35843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-opab 5210  df-xp 5681  df-rel 5682  df-bj-sngl 35835  df-bj-tag 35844
This theorem is referenced by:  bj-1uplex  35877  bj-2uplex  35891
  Copyright terms: Public domain W3C validator