| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5659 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpriindi 5800 csbres 5953 fconstg 6747 curry2 8086 fparlem4 8094 xpord2pred 8124 xpord3pred 8131 naddcllem 8640 fvdiagfn 8864 mapsncnv 8866 xpsneng 9026 axdc4lem 10408 fpwwe2lem12 10595 expval 14028 imasvscafn 17500 fuchom 17926 homafval 17991 setcmon 18049 pwsco2mhm 18760 frmdplusg 18781 smndex1igid 18831 mulgfval 19001 mulgfvalALT 19002 mulgval 19003 efgval 19647 rngqipbas 21205 pzriprnglem13 21403 pzriprnglem14 21404 pjfval 21615 frlmval 21657 islindf5 21748 psrplusg 21845 psrvscafval 21857 psrvsca 21858 opsrle 21954 evlssca 21996 mpfind 22014 coe1fv 22091 coe1tm 22159 pf1ind 22242 mdetunilem4 22502 mdetunilem9 22507 txindislem 23520 txcmplem2 23529 txhaus 23534 txkgen 23539 xkofvcn 23571 xkoinjcn 23574 cnextval 23948 cnextfval 23949 pcorev2 24928 pcophtb 24929 pi1grplem 24949 pi1inv 24952 dvfval 25798 dvnfval 25824 0dgrb 26151 dgrnznn 26152 dgreq0 26171 dgrmulc 26177 plyrem 26213 facth 26214 fta1 26216 aaliou2 26248 taylfval 26266 taylpfval 26272 expsval 28311 0ofval 30716 2ndresdju 32573 aciunf1 32587 hashxpe 32732 indval2 32777 gsumpart 32997 ply1degltdimlem 33618 sxbrsigalem3 34263 sxbrsigalem2 34277 eulerpartlemgu 34368 sseqval 34379 sconnpht 35216 sconnpht2 35225 sconnpi1 35226 cvmlift2lem11 35300 cvmlift2lem12 35301 cvmlift2lem13 35302 cvmlift3lem9 35314 sat1el2xp 35366 mexval 35489 mexval2 35490 mdvval 35491 mpstval 35522 elima4 35763 bj-xtageq 36976 matunitlindflem1 37610 poimirlem32 37646 ismrer1 37832 lflsc0N 39076 lkrscss 39091 lfl1dim 39114 lfl1dim2N 39115 ldualvs 39130 evlsvvval 42551 evlsevl 42559 0prjspnrel 42615 mzpclval 42713 mzpcl1 42717 mendvsca 43176 dvconstbi 44323 expgrowth 44324 gpgov 48033 dmrnxp 48825 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |