Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5600 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 × cxp 5577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-opab 5133 df-xp 5585 |
This theorem is referenced by: xpriindi 5733 csbres 5882 fconstg 6642 curry2 7915 fparlem4 7923 fvdiagfn 8614 mapsncnv 8616 xpsneng 8774 axdc4lem 10117 fpwwe2lem12 10304 expval 13687 imasvscafn 17140 fuchom 17569 fuchomOLD 17570 homafval 17635 setcmon 17693 pwsco2mhm 18361 frmdplusg 18383 smndex1igid 18433 mulgfval 18592 mulgfvalALT 18593 mulgval 18594 efgval 19213 pjfval 20798 frlmval 20840 islindf5 20931 psrplusg 21035 psrvscafval 21044 psrvsca 21045 opsrle 21133 evlssca 21184 mpfind 21202 coe1fv 21262 coe1tm 21329 pf1ind 21406 mdetunilem4 21647 mdetunilem9 21652 txindislem 22667 txcmplem2 22676 txhaus 22681 txkgen 22686 xkofvcn 22718 xkoinjcn 22721 cnextval 23095 cnextfval 23096 pcorev2 24072 pcophtb 24073 pi1grplem 24093 pi1inv 24096 dvfval 24941 dvnfval 24966 0dgrb 25287 dgrnznn 25288 dgreq0 25306 dgrmulc 25312 plyrem 25345 facth 25346 fta1 25348 aaliou2 25380 taylfval 25398 taylpfval 25404 0ofval 29025 2ndresdju 30862 aciunf1 30877 hashxpe 31004 gsumpart 31192 indval2 31857 sxbrsigalem3 32114 sxbrsigalem2 32128 eulerpartlemgu 32219 sseqval 32230 sconnpht 33066 sconnpht2 33075 sconnpi1 33076 cvmlift2lem11 33150 cvmlift2lem12 33151 cvmlift2lem13 33152 cvmlift3lem9 33164 sat1el2xp 33216 mexval 33339 mexval2 33340 mdvval 33341 mpstval 33372 elima4 33631 xpord2pred 33694 xpord3pred 33700 naddcllem 33733 bj-xtageq 35080 matunitlindflem1 35679 poimirlem32 35715 ismrer1 35902 lflsc0N 37003 lkrscss 37018 lfl1dim 37041 lfl1dim2N 37042 ldualvs 37057 evlsbagval 40170 0prjspnrel 40357 mzpclval 40435 mzpcl1 40439 mendvsca 40904 dvconstbi 41814 expgrowth 41815 |
Copyright terms: Public domain | W3C validator |