| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5662 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpriindi 5803 csbres 5956 fconstg 6750 curry2 8089 fparlem4 8097 xpord2pred 8127 xpord3pred 8134 naddcllem 8643 fvdiagfn 8867 mapsncnv 8869 xpsneng 9030 axdc4lem 10415 fpwwe2lem12 10602 expval 14035 imasvscafn 17507 fuchom 17933 homafval 17998 setcmon 18056 pwsco2mhm 18767 frmdplusg 18788 smndex1igid 18838 mulgfval 19008 mulgfvalALT 19009 mulgval 19010 efgval 19654 rngqipbas 21212 pzriprnglem13 21410 pzriprnglem14 21411 pjfval 21622 frlmval 21664 islindf5 21755 psrplusg 21852 psrvscafval 21864 psrvsca 21865 opsrle 21961 evlssca 22003 mpfind 22021 coe1fv 22098 coe1tm 22166 pf1ind 22249 mdetunilem4 22509 mdetunilem9 22514 txindislem 23527 txcmplem2 23536 txhaus 23541 txkgen 23546 xkofvcn 23578 xkoinjcn 23581 cnextval 23955 cnextfval 23956 pcorev2 24935 pcophtb 24936 pi1grplem 24956 pi1inv 24959 dvfval 25805 dvnfval 25831 0dgrb 26158 dgrnznn 26159 dgreq0 26178 dgrmulc 26184 plyrem 26220 facth 26221 fta1 26223 aaliou2 26255 taylfval 26273 taylpfval 26279 expsval 28318 0ofval 30723 2ndresdju 32580 aciunf1 32594 hashxpe 32739 indval2 32784 gsumpart 33004 ply1degltdimlem 33625 sxbrsigalem3 34270 sxbrsigalem2 34284 eulerpartlemgu 34375 sseqval 34386 sconnpht 35223 sconnpht2 35232 sconnpi1 35233 cvmlift2lem11 35307 cvmlift2lem12 35308 cvmlift2lem13 35309 cvmlift3lem9 35321 sat1el2xp 35373 mexval 35496 mexval2 35497 mdvval 35498 mpstval 35529 elima4 35770 bj-xtageq 36983 matunitlindflem1 37617 poimirlem32 37653 ismrer1 37839 lflsc0N 39083 lkrscss 39098 lfl1dim 39121 lfl1dim2N 39122 ldualvs 39137 evlsvvval 42558 evlsevl 42566 0prjspnrel 42622 mzpclval 42720 mzpcl1 42724 mendvsca 43183 dvconstbi 44330 expgrowth 44331 gpgov 48037 dmrnxp 48829 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |