![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5333 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 × cxp 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-opab 4906 df-xp 5318 |
This theorem is referenced by: xpriindi 5462 csbres 5603 fconstg 6307 curry2 7509 fparlem4 7517 fvdiagfn 8142 mapsncnv 8144 xpsneng 8287 xpcdaen 9293 axdc4lem 9565 fpwwe2lem13 9752 expval 13116 imasvscafn 16512 comfffval 16672 fuchom 16935 homafval 16993 setcmon 17051 xpccofval 17137 pwsco2mhm 17686 frmdplusg 17707 mulgfval 17858 mulgval 17859 symgplusg 18121 efgval 18443 psrplusg 19704 psrvscafval 19713 psrvsca 19714 opsrle 19798 evlssca 19844 mpfind 19858 coe1fv 19898 coe1tm 19965 pf1ind 20041 pjfval 20375 frlmval 20417 islindf5 20503 mdetunilem4 20747 mdetunilem9 20752 txindislem 21765 txcmplem2 21774 txhaus 21779 txkgen 21784 xkofvcn 21816 xkoinjcn 21819 cnextval 22193 cnextfval 22194 pcorev2 23155 pcophtb 23156 pi1grplem 23176 pi1inv 23179 dvfval 24002 dvnfval 24026 0dgrb 24343 dgrnznn 24344 dgreq0 24362 dgrmulc 24368 plyrem 24401 facth 24402 fta1 24404 aaliou2 24436 taylfval 24454 taylpfval 24460 0ofval 28167 aciunf1 29982 indval2 30592 sxbrsigalem3 30850 sxbrsigalem2 30864 eulerpartlemgu 30955 sseqval 30967 sconnpht 31728 sconnpht2 31737 sconnpi1 31738 cvmlift2lem11 31812 cvmlift2lem12 31813 cvmlift2lem13 31814 cvmlift3lem9 31826 mexval 31916 mexval2 31917 mdvval 31918 mpstval 31949 elima4 32191 bj-xtageq 33468 matunitlindflem1 33894 poimirlem32 33930 ismrer1 34124 lflsc0N 35104 lkrscss 35119 lfl1dim 35142 lfl1dim2N 35143 ldualvs 35158 mzpclval 38074 mzpcl1 38078 mendvsca 38546 dvconstbi 39315 expgrowth 39316 |
Copyright terms: Public domain | W3C validator |