| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5642 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: xpriindi 5782 csbres 5938 fconstg 6718 curry2 8046 fparlem4 8054 xpord2pred 8084 xpord3pred 8091 naddcllem 8600 fvdiagfn 8825 mapsncnv 8827 xpsneng 8986 axdc4lem 10357 fpwwe2lem12 10544 expval 13977 imasvscafn 17449 fuchom 17879 homafval 17944 setcmon 18002 pwsco2mhm 18749 frmdplusg 18770 smndex1igid 18820 mulgfval 18990 mulgfvalALT 18991 mulgval 18992 efgval 19637 rngqipbas 21241 pzriprnglem13 21439 pzriprnglem14 21440 pjfval 21652 frlmval 21694 islindf5 21785 psrplusg 21883 psrvscafval 21895 psrvsca 21896 opsrle 21993 evlsvvval 22039 evlssca 22040 mpfind 22061 coe1fv 22138 coe1tm 22206 pf1ind 22290 mdetunilem4 22550 mdetunilem9 22555 txindislem 23568 txcmplem2 23577 txhaus 23582 txkgen 23587 xkofvcn 23619 xkoinjcn 23622 cnextval 23996 cnextfval 23997 pcorev2 24975 pcophtb 24976 pi1grplem 24996 pi1inv 24999 dvfval 25845 dvnfval 25871 0dgrb 26198 dgrnznn 26199 dgreq0 26218 dgrmulc 26224 plyrem 26260 facth 26261 fta1 26263 aaliou2 26295 taylfval 26313 taylpfval 26319 expsval 28368 0ofval 30788 2ndresdju 32653 aciunf1 32667 hashxpe 32815 indval2 32861 gsumpart 33074 esplyfval2 33651 vieta 33664 ply1degltdimlem 33707 extdgfialglem1 33777 sxbrsigalem3 34357 sxbrsigalem2 34371 eulerpartlemgu 34462 sseqval 34473 sconnpht 35345 sconnpht2 35354 sconnpi1 35355 cvmlift2lem11 35429 cvmlift2lem12 35430 cvmlift2lem13 35431 cvmlift3lem9 35443 sat1el2xp 35495 mexval 35618 mexval2 35619 mdvval 35620 mpstval 35651 elima4 35892 bj-xtageq 37105 matunitlindflem1 37729 poimirlem32 37765 ismrer1 37951 ecxrncnvep2 38507 lflsc0N 39255 lkrscss 39270 lfl1dim 39293 lfl1dim2N 39294 ldualvs 39309 evlsevl 42732 0prjspnrel 42785 mzpclval 42882 mzpcl1 42886 mendvsca 43344 dvconstbi 44491 expgrowth 44492 gpgov 48204 dmrnxp 48998 fucofvalne 49486 |
| Copyright terms: Public domain | W3C validator |