![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5709 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-xp 5694 |
This theorem is referenced by: xpriindi 5849 csbres 6002 fconstg 6795 curry2 8130 fparlem4 8138 xpord2pred 8168 xpord3pred 8175 naddcllem 8712 fvdiagfn 8929 mapsncnv 8931 xpsneng 9094 axdc4lem 10492 fpwwe2lem12 10679 expval 14100 imasvscafn 17583 fuchom 18016 fuchomOLD 18017 homafval 18082 setcmon 18140 pwsco2mhm 18858 frmdplusg 18879 smndex1igid 18929 mulgfval 19099 mulgfvalALT 19100 mulgval 19101 efgval 19749 rngqipbas 21322 pzriprnglem13 21521 pzriprnglem14 21522 pjfval 21743 frlmval 21785 islindf5 21876 psrplusg 21973 psrvscafval 21985 psrvsca 21986 opsrle 22082 evlssca 22130 mpfind 22148 coe1fv 22223 coe1tm 22291 pf1ind 22374 mdetunilem4 22636 mdetunilem9 22641 txindislem 23656 txcmplem2 23665 txhaus 23670 txkgen 23675 xkofvcn 23707 xkoinjcn 23710 cnextval 24084 cnextfval 24085 pcorev2 25074 pcophtb 25075 pi1grplem 25095 pi1inv 25098 dvfval 25946 dvnfval 25972 0dgrb 26299 dgrnznn 26300 dgreq0 26319 dgrmulc 26325 plyrem 26361 facth 26362 fta1 26364 aaliou2 26396 taylfval 26414 taylpfval 26420 expsval 28422 0ofval 30815 2ndresdju 32665 aciunf1 32679 hashxpe 32816 gsumpart 33042 ply1degltdimlem 33649 indval2 33994 sxbrsigalem3 34253 sxbrsigalem2 34267 eulerpartlemgu 34358 sseqval 34369 sconnpht 35213 sconnpht2 35222 sconnpi1 35223 cvmlift2lem11 35297 cvmlift2lem12 35298 cvmlift2lem13 35299 cvmlift3lem9 35311 sat1el2xp 35363 mexval 35486 mexval2 35487 mdvval 35488 mpstval 35519 elima4 35756 bj-xtageq 36970 matunitlindflem1 37602 poimirlem32 37638 ismrer1 37824 lflsc0N 39064 lkrscss 39079 lfl1dim 39102 lfl1dim2N 39103 ldualvs 39118 evlsvvval 42549 evlsevl 42557 0prjspnrel 42613 mzpclval 42712 mzpcl1 42716 mendvsca 43175 dvconstbi 44329 expgrowth 44330 gpgov 47936 |
Copyright terms: Public domain | W3C validator |