Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5610 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-opab 5137 df-xp 5595 |
This theorem is referenced by: xpriindi 5745 csbres 5894 fconstg 6661 curry2 7947 fparlem4 7955 fvdiagfn 8679 mapsncnv 8681 xpsneng 8843 axdc4lem 10211 fpwwe2lem12 10398 expval 13784 imasvscafn 17248 fuchom 17678 fuchomOLD 17679 homafval 17744 setcmon 17802 pwsco2mhm 18471 frmdplusg 18493 smndex1igid 18543 mulgfval 18702 mulgfvalALT 18703 mulgval 18704 efgval 19323 pjfval 20913 frlmval 20955 islindf5 21046 psrplusg 21150 psrvscafval 21159 psrvsca 21160 opsrle 21248 evlssca 21299 mpfind 21317 coe1fv 21377 coe1tm 21444 pf1ind 21521 mdetunilem4 21764 mdetunilem9 21769 txindislem 22784 txcmplem2 22793 txhaus 22798 txkgen 22803 xkofvcn 22835 xkoinjcn 22838 cnextval 23212 cnextfval 23213 pcorev2 24191 pcophtb 24192 pi1grplem 24212 pi1inv 24215 dvfval 25061 dvnfval 25086 0dgrb 25407 dgrnznn 25408 dgreq0 25426 dgrmulc 25432 plyrem 25465 facth 25466 fta1 25468 aaliou2 25500 taylfval 25518 taylpfval 25524 0ofval 29149 2ndresdju 30986 aciunf1 31000 hashxpe 31127 gsumpart 31315 indval2 31982 sxbrsigalem3 32239 sxbrsigalem2 32253 eulerpartlemgu 32344 sseqval 32355 sconnpht 33191 sconnpht2 33200 sconnpi1 33201 cvmlift2lem11 33275 cvmlift2lem12 33276 cvmlift2lem13 33277 cvmlift3lem9 33289 sat1el2xp 33341 mexval 33464 mexval2 33465 mdvval 33466 mpstval 33497 elima4 33750 xpord2pred 33792 xpord3pred 33798 naddcllem 33831 bj-xtageq 35178 matunitlindflem1 35773 poimirlem32 35809 ismrer1 35996 lflsc0N 37097 lkrscss 37112 lfl1dim 37135 lfl1dim2N 37136 ldualvs 37151 evlsbagval 40275 0prjspnrel 40464 mzpclval 40547 mzpcl1 40551 mendvsca 41016 dvconstbi 41952 expgrowth 41953 |
Copyright terms: Public domain | W3C validator |