| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5675 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpriindi 5816 csbres 5969 fconstg 6765 curry2 8106 fparlem4 8114 xpord2pred 8144 xpord3pred 8151 naddcllem 8688 fvdiagfn 8905 mapsncnv 8907 xpsneng 9070 axdc4lem 10469 fpwwe2lem12 10656 expval 14081 imasvscafn 17551 fuchom 17977 homafval 18042 setcmon 18100 pwsco2mhm 18811 frmdplusg 18832 smndex1igid 18882 mulgfval 19052 mulgfvalALT 19053 mulgval 19054 efgval 19698 rngqipbas 21256 pzriprnglem13 21454 pzriprnglem14 21455 pjfval 21666 frlmval 21708 islindf5 21799 psrplusg 21896 psrvscafval 21908 psrvsca 21909 opsrle 22005 evlssca 22047 mpfind 22065 coe1fv 22142 coe1tm 22210 pf1ind 22293 mdetunilem4 22553 mdetunilem9 22558 txindislem 23571 txcmplem2 23580 txhaus 23585 txkgen 23590 xkofvcn 23622 xkoinjcn 23625 cnextval 23999 cnextfval 24000 pcorev2 24979 pcophtb 24980 pi1grplem 25000 pi1inv 25003 dvfval 25850 dvnfval 25876 0dgrb 26203 dgrnznn 26204 dgreq0 26223 dgrmulc 26229 plyrem 26265 facth 26266 fta1 26268 aaliou2 26300 taylfval 26318 taylpfval 26324 expsval 28363 0ofval 30768 2ndresdju 32627 aciunf1 32641 hashxpe 32786 indval2 32831 gsumpart 33051 ply1degltdimlem 33662 sxbrsigalem3 34304 sxbrsigalem2 34318 eulerpartlemgu 34409 sseqval 34420 sconnpht 35251 sconnpht2 35260 sconnpi1 35261 cvmlift2lem11 35335 cvmlift2lem12 35336 cvmlift2lem13 35337 cvmlift3lem9 35349 sat1el2xp 35401 mexval 35524 mexval2 35525 mdvval 35526 mpstval 35557 elima4 35793 bj-xtageq 37006 matunitlindflem1 37640 poimirlem32 37676 ismrer1 37862 lflsc0N 39101 lkrscss 39116 lfl1dim 39139 lfl1dim2N 39140 ldualvs 39155 evlsvvval 42586 evlsevl 42594 0prjspnrel 42650 mzpclval 42748 mzpcl1 42752 mendvsca 43211 dvconstbi 44358 expgrowth 44359 gpgov 48046 dmrnxp 48815 fucofvalne 49236 |
| Copyright terms: Public domain | W3C validator |