| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5644 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: xpriindi 5783 csbres 5937 fconstg 6715 curry2 8047 fparlem4 8055 xpord2pred 8085 xpord3pred 8092 naddcllem 8601 fvdiagfn 8825 mapsncnv 8827 xpsneng 8986 axdc4lem 10368 fpwwe2lem12 10555 expval 13988 imasvscafn 17459 fuchom 17889 homafval 17954 setcmon 18012 pwsco2mhm 18725 frmdplusg 18746 smndex1igid 18796 mulgfval 18966 mulgfvalALT 18967 mulgval 18968 efgval 19614 rngqipbas 21220 pzriprnglem13 21418 pzriprnglem14 21419 pjfval 21631 frlmval 21673 islindf5 21764 psrplusg 21861 psrvscafval 21873 psrvsca 21874 opsrle 21970 evlssca 22012 mpfind 22030 coe1fv 22107 coe1tm 22175 pf1ind 22258 mdetunilem4 22518 mdetunilem9 22523 txindislem 23536 txcmplem2 23545 txhaus 23550 txkgen 23555 xkofvcn 23587 xkoinjcn 23590 cnextval 23964 cnextfval 23965 pcorev2 24944 pcophtb 24945 pi1grplem 24965 pi1inv 24968 dvfval 25814 dvnfval 25840 0dgrb 26167 dgrnznn 26168 dgreq0 26187 dgrmulc 26193 plyrem 26229 facth 26230 fta1 26232 aaliou2 26264 taylfval 26282 taylpfval 26288 expsval 28335 0ofval 30749 2ndresdju 32606 aciunf1 32620 hashxpe 32765 indval2 32810 gsumpart 33023 ply1degltdimlem 33597 sxbrsigalem3 34242 sxbrsigalem2 34256 eulerpartlemgu 34347 sseqval 34358 sconnpht 35204 sconnpht2 35213 sconnpi1 35214 cvmlift2lem11 35288 cvmlift2lem12 35289 cvmlift2lem13 35290 cvmlift3lem9 35302 sat1el2xp 35354 mexval 35477 mexval2 35478 mdvval 35479 mpstval 35510 elima4 35751 bj-xtageq 36964 matunitlindflem1 37598 poimirlem32 37634 ismrer1 37820 lflsc0N 39064 lkrscss 39079 lfl1dim 39102 lfl1dim2N 39103 ldualvs 39118 evlsvvval 42539 evlsevl 42547 0prjspnrel 42603 mzpclval 42701 mzpcl1 42705 mendvsca 43163 dvconstbi 44310 expgrowth 44311 gpgov 48030 dmrnxp 48825 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |