![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5721 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpriindi 5861 csbres 6012 fconstg 6808 curry2 8148 fparlem4 8156 xpord2pred 8186 xpord3pred 8193 naddcllem 8732 fvdiagfn 8949 mapsncnv 8951 xpsneng 9122 axdc4lem 10524 fpwwe2lem12 10711 expval 14114 imasvscafn 17597 fuchom 18030 fuchomOLD 18031 homafval 18096 setcmon 18154 pwsco2mhm 18868 frmdplusg 18889 smndex1igid 18939 mulgfval 19109 mulgfvalALT 19110 mulgval 19111 efgval 19759 rngqipbas 21328 pzriprnglem13 21527 pzriprnglem14 21528 pjfval 21749 frlmval 21791 islindf5 21882 psrplusg 21979 psrvscafval 21991 psrvsca 21992 opsrle 22088 evlssca 22136 mpfind 22154 coe1fv 22229 coe1tm 22297 pf1ind 22380 mdetunilem4 22642 mdetunilem9 22647 txindislem 23662 txcmplem2 23671 txhaus 23676 txkgen 23681 xkofvcn 23713 xkoinjcn 23716 cnextval 24090 cnextfval 24091 pcorev2 25080 pcophtb 25081 pi1grplem 25101 pi1inv 25104 dvfval 25952 dvnfval 25978 0dgrb 26305 dgrnznn 26306 dgreq0 26325 dgrmulc 26331 plyrem 26365 facth 26366 fta1 26368 aaliou2 26400 taylfval 26418 taylpfval 26424 expsval 28426 0ofval 30819 2ndresdju 32667 aciunf1 32681 hashxpe 32814 gsumpart 33038 ply1degltdimlem 33635 indval2 33978 sxbrsigalem3 34237 sxbrsigalem2 34251 eulerpartlemgu 34342 sseqval 34353 sconnpht 35197 sconnpht2 35206 sconnpi1 35207 cvmlift2lem11 35281 cvmlift2lem12 35282 cvmlift2lem13 35283 cvmlift3lem9 35295 sat1el2xp 35347 mexval 35470 mexval2 35471 mdvval 35472 mpstval 35503 elima4 35739 bj-xtageq 36954 matunitlindflem1 37576 poimirlem32 37612 ismrer1 37798 lflsc0N 39039 lkrscss 39054 lfl1dim 39077 lfl1dim2N 39078 ldualvs 39093 evlsvvval 42518 evlsevl 42526 0prjspnrel 42582 mzpclval 42681 mzpcl1 42685 mendvsca 43148 dvconstbi 44303 expgrowth 44304 |
Copyright terms: Public domain | W3C validator |