Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq2 5546 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-opab 5093 df-xp 5531 |
This theorem is referenced by: xpriindi 5679 csbres 5828 fconstg 6565 curry2 7828 fparlem4 7836 fvdiagfn 8501 mapsncnv 8503 xpsneng 8651 axdc4lem 9955 fpwwe2lem12 10142 expval 13523 imasvscafn 16913 fuchom 17336 homafval 17401 setcmon 17459 pwsco2mhm 18113 frmdplusg 18135 smndex1igid 18185 mulgfval 18344 mulgfvalALT 18345 mulgval 18346 efgval 18961 pjfval 20522 frlmval 20564 islindf5 20655 psrplusg 20760 psrvscafval 20769 psrvsca 20770 opsrle 20858 evlssca 20903 mpfind 20921 coe1fv 20981 coe1tm 21048 pf1ind 21125 mdetunilem4 21366 mdetunilem9 21371 txindislem 22384 txcmplem2 22393 txhaus 22398 txkgen 22403 xkofvcn 22435 xkoinjcn 22438 cnextval 22812 cnextfval 22813 pcorev2 23780 pcophtb 23781 pi1grplem 23801 pi1inv 23804 dvfval 24649 dvnfval 24674 0dgrb 24995 dgrnznn 24996 dgreq0 25014 dgrmulc 25020 plyrem 25053 facth 25054 fta1 25056 aaliou2 25088 taylfval 25106 taylpfval 25112 0ofval 28722 2ndresdju 30560 aciunf1 30575 hashxpe 30702 gsumpart 30892 indval2 31552 sxbrsigalem3 31809 sxbrsigalem2 31823 eulerpartlemgu 31914 sseqval 31925 sconnpht 32762 sconnpht2 32771 sconnpi1 32772 cvmlift2lem11 32846 cvmlift2lem12 32847 cvmlift2lem13 32848 cvmlift3lem9 32860 sat1el2xp 32912 mexval 33035 mexval2 33036 mdvval 33037 mpstval 33068 elima4 33324 xpord2pred 33405 xpord3pred 33411 naddcllem 33474 bj-xtageq 34821 matunitlindflem1 35416 poimirlem32 35452 ismrer1 35639 lflsc0N 36740 lkrscss 36755 lfl1dim 36778 lfl1dim2N 36779 ldualvs 36794 evlsbagval 39874 0prjspnrel 40061 mzpclval 40139 mzpcl1 40143 mendvsca 40608 dvconstbi 41510 expgrowth 41511 |
Copyright terms: Public domain | W3C validator |