| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq2d | ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq2 5652 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpriindi 5790 csbres 5942 fconstg 6729 curry2 8063 fparlem4 8071 xpord2pred 8101 xpord3pred 8108 naddcllem 8617 fvdiagfn 8841 mapsncnv 8843 xpsneng 9003 axdc4lem 10384 fpwwe2lem12 10571 expval 14004 imasvscafn 17476 fuchom 17902 homafval 17967 setcmon 18025 pwsco2mhm 18736 frmdplusg 18757 smndex1igid 18807 mulgfval 18977 mulgfvalALT 18978 mulgval 18979 efgval 19623 rngqipbas 21181 pzriprnglem13 21379 pzriprnglem14 21380 pjfval 21591 frlmval 21633 islindf5 21724 psrplusg 21821 psrvscafval 21833 psrvsca 21834 opsrle 21930 evlssca 21972 mpfind 21990 coe1fv 22067 coe1tm 22135 pf1ind 22218 mdetunilem4 22478 mdetunilem9 22483 txindislem 23496 txcmplem2 23505 txhaus 23510 txkgen 23515 xkofvcn 23547 xkoinjcn 23550 cnextval 23924 cnextfval 23925 pcorev2 24904 pcophtb 24905 pi1grplem 24925 pi1inv 24928 dvfval 25774 dvnfval 25800 0dgrb 26127 dgrnznn 26128 dgreq0 26147 dgrmulc 26153 plyrem 26189 facth 26190 fta1 26192 aaliou2 26224 taylfval 26242 taylpfval 26248 expsval 28287 0ofval 30689 2ndresdju 32546 aciunf1 32560 hashxpe 32705 indval2 32750 gsumpart 32970 ply1degltdimlem 33591 sxbrsigalem3 34236 sxbrsigalem2 34250 eulerpartlemgu 34341 sseqval 34352 sconnpht 35189 sconnpht2 35198 sconnpi1 35199 cvmlift2lem11 35273 cvmlift2lem12 35274 cvmlift2lem13 35275 cvmlift3lem9 35287 sat1el2xp 35339 mexval 35462 mexval2 35463 mdvval 35464 mpstval 35495 elima4 35736 bj-xtageq 36949 matunitlindflem1 37583 poimirlem32 37619 ismrer1 37805 lflsc0N 39049 lkrscss 39064 lfl1dim 39087 lfl1dim2N 39088 ldualvs 39103 evlsvvval 42524 evlsevl 42532 0prjspnrel 42588 mzpclval 42686 mzpcl1 42690 mendvsca 43149 dvconstbi 44296 expgrowth 44297 gpgov 48006 dmrnxp 48798 fucofvalne 49287 |
| Copyright terms: Public domain | W3C validator |