| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj154 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj153 34894. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj154.1 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
| bnj154.2 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Ref | Expression |
|---|---|
| bnj154 | ⊢ (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj154.1 | . 2 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
| 2 | bnj154.2 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 3 | 2 | sbcbii 3846 | . 2 ⊢ ([𝑔 / 𝑓]𝜑′ ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 4 | vex 3484 | . . 3 ⊢ 𝑔 ∈ V | |
| 5 | fveq1 6905 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅)) | |
| 6 | 5 | eqeq1d 2739 | . . 3 ⊢ (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))) |
| 7 | 4, 6 | sbcie 3830 | . 2 ⊢ ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 8 | 1, 3, 7 | 3bitri 297 | 1 ⊢ (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 [wsbc 3788 ∅c0 4333 ‘cfv 6561 predc-bnj14 34702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 df-ss 3968 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 |
| This theorem is referenced by: bnj153 34894 bnj580 34927 bnj607 34930 |
| Copyright terms: Public domain | W3C validator |