Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj154 Structured version   Visualization version   GIF version

Theorem bnj154 32858
Description: Technical lemma for bnj153 32860. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj154.1 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj154.2 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj154 (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑓,𝑔   𝑥,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑔)   𝑅(𝑥,𝑔)   𝜑′(𝑥,𝑓,𝑔)   𝜑1(𝑥,𝑓,𝑔)

Proof of Theorem bnj154
StepHypRef Expression
1 bnj154.1 . 2 (𝜑1[𝑔 / 𝑓]𝜑′)
2 bnj154.2 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
32sbcbii 3776 . 2 ([𝑔 / 𝑓]𝜑′[𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
4 vex 3436 . . 3 𝑔 ∈ V
5 fveq1 6773 . . . 4 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
65eqeq1d 2740 . . 3 (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)))
74, 6sbcie 3759 . 2 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))
81, 3, 73bitri 297 1 (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  [wsbc 3716  c0 4256  cfv 6433   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sbc 3717  df-in 3894  df-ss 3904  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj153  32860  bnj580  32893  bnj607  32896
  Copyright terms: Public domain W3C validator