![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj154 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 34187. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj154.1 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj154.2 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj154 | ⊢ (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj154.1 | . 2 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
2 | bnj154.2 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
3 | 2 | sbcbii 3838 | . 2 ⊢ ([𝑔 / 𝑓]𝜑′ ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
4 | vex 3476 | . . 3 ⊢ 𝑔 ∈ V | |
5 | fveq1 6891 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅)) | |
6 | 5 | eqeq1d 2732 | . . 3 ⊢ (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))) |
7 | 4, 6 | sbcie 3821 | . 2 ⊢ ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
8 | 1, 3, 7 | 3bitri 296 | 1 ⊢ (𝜑1 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 [wsbc 3778 ∅c0 4323 ‘cfv 6544 predc-bnj14 33995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-sbc 3779 df-in 3956 df-ss 3966 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 |
This theorem is referenced by: bnj153 34187 bnj580 34220 bnj607 34223 |
Copyright terms: Public domain | W3C validator |