Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj155 Structured version   Visualization version   GIF version

Theorem bnj155 32759
Description: Technical lemma for bnj153 32760. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj155.1 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj155.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj155 (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑓,𝑔,𝑖,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑔,𝑖)   𝑅(𝑦,𝑔,𝑖)   𝜓′(𝑦,𝑓,𝑔,𝑖)   𝜓1(𝑦,𝑓,𝑔,𝑖)

Proof of Theorem bnj155
StepHypRef Expression
1 bnj155.1 . 2 (𝜓1[𝑔 / 𝑓]𝜓′)
2 bnj155.2 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3772 . 2 ([𝑔 / 𝑓]𝜓′[𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 vex 3426 . . 3 𝑔 ∈ V
5 fveq1 6755 . . . . . 6 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
6 fveq1 6755 . . . . . . 7 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
76iuneq1d 4948 . . . . . 6 (𝑓 = 𝑔 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))
85, 7eqeq12d 2754 . . . . 5 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
98imbi2d 340 . . . 4 (𝑓 = 𝑔 → ((suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
109ralbidv 3120 . . 3 (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
114, 10sbcie 3754 . 2 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
121, 3, 113bitri 296 1 (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  [wsbc 3711   ciun 4921  suc csuc 6253  cfv 6418  ωcom 7687  1oc1o 8260   predc-bnj14 32567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-in 3890  df-ss 3900  df-uni 4837  df-iun 4923  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  bnj153  32760
  Copyright terms: Public domain W3C validator