![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj155 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 31467. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj155.1 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
bnj155.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj155 | ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj155.1 | . 2 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
2 | bnj155.2 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | 2 | sbcbii 3689 | . 2 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ [𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | vex 3388 | . . 3 ⊢ 𝑔 ∈ V | |
5 | fveq1 6410 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖)) | |
6 | fveq1 6410 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘𝑖) = (𝑔‘𝑖)) | |
7 | 6 | iuneq1d 4735 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
8 | 5, 7 | eqeq12d 2814 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
9 | 8 | imbi2d 332 | . . . 4 ⊢ (𝑓 = 𝑔 → ((suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
10 | 9 | ralbidv 3167 | . . 3 ⊢ (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
11 | 4, 10 | sbcie 3668 | . 2 ⊢ ([𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | 1, 3, 11 | 3bitri 289 | 1 ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∀wral 3089 [wsbc 3633 ∪ ciun 4710 suc csuc 5943 ‘cfv 6101 ωcom 7299 1𝑜c1o 7792 predc-bnj14 31274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-v 3387 df-sbc 3634 df-in 3776 df-ss 3783 df-uni 4629 df-iun 4712 df-br 4844 df-iota 6064 df-fv 6109 |
This theorem is referenced by: bnj153 31467 |
Copyright terms: Public domain | W3C validator |