Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj155 Structured version   Visualization version   GIF version

Theorem bnj155 32159
 Description: Technical lemma for bnj153 32160. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj155.1 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj155.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj155 (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑓,𝑔,𝑖,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑔,𝑖)   𝑅(𝑦,𝑔,𝑖)   𝜓′(𝑦,𝑓,𝑔,𝑖)   𝜓1(𝑦,𝑓,𝑔,𝑖)

Proof of Theorem bnj155
StepHypRef Expression
1 bnj155.1 . 2 (𝜓1[𝑔 / 𝑓]𝜓′)
2 bnj155.2 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3805 . 2 ([𝑔 / 𝑓]𝜓′[𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 vex 3474 . . 3 𝑔 ∈ V
5 fveq1 6642 . . . . . 6 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
6 fveq1 6642 . . . . . . 7 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
76iuneq1d 4919 . . . . . 6 (𝑓 = 𝑔 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))
85, 7eqeq12d 2837 . . . . 5 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
98imbi2d 344 . . . 4 (𝑓 = 𝑔 → ((suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
109ralbidv 3185 . . 3 (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
114, 10sbcie 3789 . 2 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
121, 3, 113bitri 300 1 (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2115  ∀wral 3126  [wsbc 3749  ∪ ciun 4892  suc csuc 6166  ‘cfv 6328  ωcom 7555  1oc1o 8070   predc-bnj14 31966 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-v 3473  df-sbc 3750  df-in 3917  df-ss 3927  df-uni 4812  df-iun 4894  df-br 5040  df-iota 6287  df-fv 6336 This theorem is referenced by:  bnj153  32160
 Copyright terms: Public domain W3C validator