| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj155 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj153 34857. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj155.1 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
| bnj155.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj155 | ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj155.1 | . 2 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
| 2 | bnj155.2 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | 2 | sbcbii 3822 | . 2 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ [𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 4 | vex 3463 | . . 3 ⊢ 𝑔 ∈ V | |
| 5 | fveq1 6874 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖)) | |
| 6 | fveq1 6874 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘𝑖) = (𝑔‘𝑖)) | |
| 7 | 6 | iuneq1d 4995 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 8 | 5, 7 | eqeq12d 2751 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝑔 → ((suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 10 | 9 | ralbidv 3163 | . . 3 ⊢ (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 11 | 4, 10 | sbcie 3807 | . 2 ⊢ ([𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 12 | 1, 3, 11 | 3bitri 297 | 1 ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 ∪ ciun 4967 suc csuc 6354 ‘cfv 6530 ωcom 7859 1oc1o 8471 predc-bnj14 34665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-sbc 3766 df-ss 3943 df-uni 4884 df-iun 4969 df-br 5120 df-iota 6483 df-fv 6538 |
| This theorem is referenced by: bnj153 34857 |
| Copyright terms: Public domain | W3C validator |