Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj153 Structured version   Visualization version   GIF version

Theorem bnj153 32262
Description: Technical lemma for bnj852 32303. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj153.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj153.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj153.3 𝐷 = (ω ∖ {∅})
bnj153.4 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj153.5 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
Assertion
Ref Expression
bnj153 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑥,𝑦,𝑛   𝑅,𝑓,𝑖,𝑥,𝑦,𝑛   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑚)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑚)

Proof of Theorem bnj153
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 bnj153.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj153.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj153.3 . 2 𝐷 = (ω ∖ {∅})
4 bnj153.4 . 2 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5 bnj153.5 . 2 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
6 biid 264 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
7 biid 264 . . . 4 ([1o / 𝑛]𝜑[1o / 𝑛]𝜑)
81, 7bnj118 32251 . . 3 ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
98bicomi 227 . 2 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [1o / 𝑛]𝜑)
10 bnj105 32104 . . . 4 1o ∈ V
112, 10bnj92 32244 . . 3 ([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1211bicomi 227 . 2 (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [1o / 𝑛]𝜓)
13 biid 264 . 2 ([1o / 𝑛]𝜃[1o / 𝑛]𝜃)
14 biid 264 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
15 biid 264 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
16 biid 264 . . . . 5 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
17 biid 264 . . . . 5 ([1o / 𝑛]𝜓[1o / 𝑛]𝜓)
186, 16, 7, 17bnj121 32252 . . . 4 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓)))
198anbi2i 625 . . . . . . 7 ((𝑓 Fn 1o[1o / 𝑛]𝜑) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)))
2019, 11anbi12i 629 . . . . . 6 (((𝑓 Fn 1o[1o / 𝑛]𝜑) ∧ [1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
21 df-3an 1086 . . . . . 6 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o[1o / 𝑛]𝜑) ∧ [1o / 𝑛]𝜓))
22 df-3an 1086 . . . . . 6 ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
2320, 21, 223bitr4i 306 . . . . 5 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
2423imbi2i 339 . . . 4 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
2518, 24bitri 278 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
2625bicomi 227 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
27 eqid 2798 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
28 biid 264 . 2 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
29 biid 264 . 2 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3026sbcbii 3776 . . 3 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
31 biid 264 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑)
32 biid 264 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)
33 biid 264 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
3427, 31, 32, 33, 18bnj124 32253 . . . 4 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)))
351, 7, 31, 27bnj125 32254 . . . . . . . 8 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅))
3635anbi2i 625 . . . . . . 7 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)))
372, 17, 32, 27bnj126 32255 . . . . . . 7 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))
3836, 37anbi12i 629 . . . . . 6 ((({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
39 df-3an 1086 . . . . . 6 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓))
40 df-3an 1086 . . . . . 6 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
4138, 39, 403bitr4i 306 . . . . 5 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
4241imbi2i 339 . . . 4 (((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))))
4334, 42bitri 278 . . 3 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))))
4430, 43bitr2i 279 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
45 biid 264 . 2 ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
46 biid 264 . . . . 5 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
47 biid 264 . . . . 5 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
48 biid 264 . . . . 5 ([𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜑)
49 biid 264 . . . . 5 ([𝑔 / 𝑓][1o / 𝑛]𝜓[𝑔 / 𝑓][1o / 𝑛]𝜓)
5046, 47, 48, 49bnj156 32108 . . . 4 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓))
5148, 8bnj154 32260 . . . . . . 7 ([𝑔 / 𝑓][1o / 𝑛]𝜑 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))
5251anbi2i 625 . . . . . 6 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)))
5317, 11bitri 278 . . . . . . 7 ([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5449, 53bnj155 32261 . . . . . 6 ([𝑔 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
5552, 54anbi12i 629 . . . . 5 (((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
56 df-3an 1086 . . . . 5 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓))
57 df-3an 1086 . . . . 5 ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
5855, 56, 573bitr4i 306 . . . 4 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
5950, 58bitri 278 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
6023sbcbii 3776 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
6159, 60bitr3i 280 . 2 ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
62 biid 264 . 2 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
63 biid 264 . 2 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
641, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 26, 27, 28, 29, 44, 45, 61, 62, 63bnj151 32259 1 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  ∃!weu 2628  wral 3106  [wsbc 3720  cdif 3878  c0 4243  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030   E cep 5429  suc csuc 6161   Fn wfn 6319  cfv 6324  ωcom 7560  1oc1o 8078   predc-bnj14 32068   FrSe w-bnj15 32072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-reu 3113  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-bnj13 32071  df-bnj15 32073
This theorem is referenced by:  bnj852  32303
  Copyright terms: Public domain W3C validator