Step | Hyp | Ref
| Expression |
1 | | bnj153.1 |
. 2
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
2 | | bnj153.2 |
. 2
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | | bnj153.3 |
. 2
⊢ 𝐷 = (ω ∖
{∅}) |
4 | | bnj153.4 |
. 2
⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
5 | | bnj153.5 |
. 2
⊢ (𝜏 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜃)) |
6 | | biid 261 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
7 | | biid 261 |
. . . 4
⊢
([1o / 𝑛]𝜑 ↔ [1o / 𝑛]𝜑) |
8 | 1, 7 | bnj118 33880 |
. . 3
⊢
([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
9 | 8 | bicomi 223 |
. 2
⊢ ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [1o / 𝑛]𝜑) |
10 | | bnj105 33735 |
. . . 4
⊢
1o ∈ V |
11 | 2, 10 | bnj92 33873 |
. . 3
⊢
([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | 11 | bicomi 223 |
. 2
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈
1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [1o / 𝑛]𝜓) |
13 | | biid 261 |
. 2
⊢
([1o / 𝑛]𝜃 ↔ [1o / 𝑛]𝜃) |
14 | | biid 261 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
15 | | biid 261 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
16 | | biid 261 |
. . . . 5
⊢
([1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
17 | | biid 261 |
. . . . 5
⊢
([1o / 𝑛]𝜓 ↔ [1o / 𝑛]𝜓) |
18 | 6, 16, 7, 17 | bnj121 33881 |
. . . 4
⊢
([1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓))) |
19 | 8 | anbi2i 624 |
. . . . . . 7
⊢ ((𝑓 Fn 1o ∧
[1o / 𝑛]𝜑) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))) |
20 | 19, 11 | anbi12i 628 |
. . . . . 6
⊢ (((𝑓 Fn 1o ∧
[1o / 𝑛]𝜑) ∧ [1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
21 | | df-3an 1090 |
. . . . . 6
⊢ ((𝑓 Fn 1o ∧
[1o / 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑) ∧ [1o / 𝑛]𝜓)) |
22 | | df-3an 1090 |
. . . . . 6
⊢ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
23 | 20, 21, 22 | 3bitr4i 303 |
. . . . 5
⊢ ((𝑓 Fn 1o ∧
[1o / 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
24 | 23 | imbi2i 336 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
25 | 18, 24 | bitri 275 |
. . 3
⊢
([1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
26 | 25 | bicomi 223 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
27 | | eqid 2733 |
. 2
⊢
{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
28 | | biid 261 |
. 2
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
29 | | biid 261 |
. 2
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
30 | 26 | sbcbii 3838 |
. . 3
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
31 | | biid 261 |
. . . . 5
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) |
32 | | biid 261 |
. . . . 5
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓 ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) |
33 | | biid 261 |
. . . . 5
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
34 | 27, 31, 32, 33, 18 | bnj124 33882 |
. . . 4
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓))) |
35 | 1, 7, 31, 27 | bnj125 33883 |
. . . . . . . 8
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) |
36 | 35 | anbi2i 624 |
. . . . . . 7
⊢
(({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅))) |
37 | 2, 17, 32, 27 | bnj126 33884 |
. . . . . . 7
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
38 | 36, 37 | anbi12i 628 |
. . . . . 6
⊢
((({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
39 | | df-3an 1090 |
. . . . . 6
⊢
(({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)) |
40 | | df-3an 1090 |
. . . . . 6
⊢
(({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
41 | 38, 39, 40 | 3bitr4i 303 |
. . . . 5
⊢
(({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
42 | 41 | imbi2i 336 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
43 | 34, 42 | bitri 275 |
. . 3
⊢
([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
44 | 30, 43 | bitr2i 276 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧
({⟨∅, pred(𝑥,
𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = ∪ 𝑦 ∈ ({⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅,
pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
45 | | biid 261 |
. 2
⊢ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
46 | | biid 261 |
. . . . 5
⊢ ((𝑓 Fn 1o ∧
[1o / 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓)) |
47 | | biid 261 |
. . . . 5
⊢
([𝑔 / 𝑓](𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓)) |
48 | | biid 261 |
. . . . 5
⊢
([𝑔 / 𝑓][1o /
𝑛]𝜑 ↔ [𝑔 / 𝑓][1o / 𝑛]𝜑) |
49 | | biid 261 |
. . . . 5
⊢
([𝑔 / 𝑓][1o /
𝑛]𝜓 ↔ [𝑔 / 𝑓][1o / 𝑛]𝜓) |
50 | 46, 47, 48, 49 | bnj156 33739 |
. . . 4
⊢
([𝑔 / 𝑓](𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ [𝑔 / 𝑓][1o / 𝑛]𝜑 ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓)) |
51 | 48, 8 | bnj154 33889 |
. . . . . . 7
⊢
([𝑔 / 𝑓][1o /
𝑛]𝜑 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) |
52 | 51 | anbi2i 624 |
. . . . . 6
⊢ ((𝑔 Fn 1o ∧
[𝑔 / 𝑓][1o /
𝑛]𝜑) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))) |
53 | 17, 11 | bitri 275 |
. . . . . . 7
⊢
([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
54 | 49, 53 | bnj155 33890 |
. . . . . 6
⊢
([𝑔 / 𝑓][1o /
𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
55 | 52, 54 | anbi12i 628 |
. . . . 5
⊢ (((𝑔 Fn 1o ∧
[𝑔 / 𝑓][1o /
𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
56 | | df-3an 1090 |
. . . . 5
⊢ ((𝑔 Fn 1o ∧
[𝑔 / 𝑓][1o /
𝑛]𝜑 ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o ∧ [𝑔 / 𝑓][1o / 𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓)) |
57 | | df-3an 1090 |
. . . . 5
⊢ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
58 | 55, 56, 57 | 3bitr4i 303 |
. . . 4
⊢ ((𝑔 Fn 1o ∧
[𝑔 / 𝑓][1o /
𝑛]𝜑 ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
59 | 50, 58 | bitri 275 |
. . 3
⊢
([𝑔 / 𝑓](𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
60 | 23 | sbcbii 3838 |
. . 3
⊢
([𝑔 / 𝑓](𝑓 Fn 1o ∧ [1o
/ 𝑛]𝜑 ∧ [1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
61 | 59, 60 | bitr3i 277 |
. 2
⊢ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
62 | | biid 261 |
. 2
⊢
([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
63 | | biid 261 |
. 2
⊢
([𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o →
(𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
64 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 26, 27, 28, 29, 44, 45, 61, 62, 63 | bnj151 33888 |
1
⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |