Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj153 Structured version   Visualization version   GIF version

Theorem bnj153 33891
Description: Technical lemma for bnj852 33932. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj153.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj153.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj153.3 𝐷 = (ω ∖ {∅})
bnj153.4 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj153.5 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
Assertion
Ref Expression
bnj153 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑥,𝑦,𝑛   𝑅,𝑓,𝑖,𝑥,𝑦,𝑛   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑚)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑚)

Proof of Theorem bnj153
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 bnj153.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj153.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj153.3 . 2 𝐷 = (ω ∖ {∅})
4 bnj153.4 . 2 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5 bnj153.5 . 2 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
6 biid 261 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
7 biid 261 . . . 4 ([1o / 𝑛]𝜑[1o / 𝑛]𝜑)
81, 7bnj118 33880 . . 3 ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
98bicomi 223 . 2 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [1o / 𝑛]𝜑)
10 bnj105 33735 . . . 4 1o ∈ V
112, 10bnj92 33873 . . 3 ([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1211bicomi 223 . 2 (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [1o / 𝑛]𝜓)
13 biid 261 . 2 ([1o / 𝑛]𝜃[1o / 𝑛]𝜃)
14 biid 261 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
15 biid 261 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
16 biid 261 . . . . 5 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
17 biid 261 . . . . 5 ([1o / 𝑛]𝜓[1o / 𝑛]𝜓)
186, 16, 7, 17bnj121 33881 . . . 4 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓)))
198anbi2i 624 . . . . . . 7 ((𝑓 Fn 1o[1o / 𝑛]𝜑) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)))
2019, 11anbi12i 628 . . . . . 6 (((𝑓 Fn 1o[1o / 𝑛]𝜑) ∧ [1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
21 df-3an 1090 . . . . . 6 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ ((𝑓 Fn 1o[1o / 𝑛]𝜑) ∧ [1o / 𝑛]𝜓))
22 df-3an 1090 . . . . . 6 ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
2320, 21, 223bitr4i 303 . . . . 5 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
2423imbi2i 336 . . . 4 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
2518, 24bitri 275 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
2625bicomi 223 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
27 eqid 2733 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
28 biid 261 . 2 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
29 biid 261 . 2 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3026sbcbii 3838 . . 3 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
31 biid 261 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑)
32 biid 261 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)
33 biid 261 . . . . 5 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
3427, 31, 32, 33, 18bnj124 33882 . . . 4 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)))
351, 7, 31, 27bnj125 33883 . . . . . . . 8 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑 ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅))
3635anbi2i 624 . . . . . . 7 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)))
372, 17, 32, 27bnj126 33884 . . . . . . 7 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))
3836, 37anbi12i 628 . . . . . 6 ((({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
39 df-3an 1090 . . . . . 6 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑) ∧ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓))
40 df-3an 1090 . . . . . 6 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
4138, 39, 403bitr4i 303 . . . . 5 (({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓) ↔ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅))))
4241imbi2i 336 . . . 4 (((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜑[{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))))
4334, 42bitri 275 . . 3 ([{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓][1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))))
4430, 43bitr2i 276 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} Fn 1o ∧ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘suc 𝑖) = 𝑦 ∈ ({⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}‘𝑖) pred(𝑦, 𝐴, 𝑅)))) ↔ [{⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
45 biid 261 . 2 ((𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
46 biid 261 . . . . 5 ((𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
47 biid 261 . . . . 5 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
48 biid 261 . . . . 5 ([𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜑)
49 biid 261 . . . . 5 ([𝑔 / 𝑓][1o / 𝑛]𝜓[𝑔 / 𝑓][1o / 𝑛]𝜓)
5046, 47, 48, 49bnj156 33739 . . . 4 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓))
5148, 8bnj154 33889 . . . . . . 7 ([𝑔 / 𝑓][1o / 𝑛]𝜑 ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))
5251anbi2i 624 . . . . . 6 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)))
5317, 11bitri 275 . . . . . . 7 ([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5449, 53bnj155 33890 . . . . . 6 ([𝑔 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
5552, 54anbi12i 628 . . . . 5 (((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
56 df-3an 1090 . . . . 5 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑) ∧ [𝑔 / 𝑓][1o / 𝑛]𝜓))
57 df-3an 1090 . . . . 5 ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅)) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
5855, 56, 573bitr4i 303 . . . 4 ((𝑔 Fn 1o[𝑔 / 𝑓][1o / 𝑛]𝜑[𝑔 / 𝑓][1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
5950, 58bitri 275 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ (𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
6023sbcbii 3838 . . 3 ([𝑔 / 𝑓](𝑓 Fn 1o[1o / 𝑛]𝜑[1o / 𝑛]𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
6159, 60bitr3i 277 . 2 ((𝑔 Fn 1o ∧ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑔 / 𝑓](𝑓 Fn 1o ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
62 biid 261 . 2 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
63 biid 261 . 2 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
641, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 26, 27, 28, 29, 44, 45, 61, 62, 63bnj151 33888 1 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  ∃*wmo 2533  ∃!weu 2563  wral 3062  [wsbc 3778  cdif 3946  c0 4323  {csn 4629  cop 4635   ciun 4998   class class class wbr 5149   E cep 5580  suc csuc 6367   Fn wfn 6539  cfv 6544  ωcom 7855  1oc1o 8459   predc-bnj14 33699   FrSe w-bnj15 33703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1o 8466  df-bnj13 33702  df-bnj15 33704
This theorem is referenced by:  bnj852  33932
  Copyright terms: Public domain W3C validator