Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj151 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 32860. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj151.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj151.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj151.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj151.4 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.5 | ⊢ (𝜏 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜃)) |
bnj151.6 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.7 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
bnj151.8 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
bnj151.9 | ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) |
bnj151.10 | ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.11 | ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.12 | ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) |
bnj151.13 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
bnj151.14 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj151.15 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj151.16 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
bnj151.17 | ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
bnj151.18 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj151.19 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj151.20 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj151 | ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj151.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj151.2 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj151.6 | . . . . . . 7 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
4 | bnj151.7 | . . . . . . 7 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
5 | bnj151.8 | . . . . . . 7 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
6 | bnj151.10 | . . . . . . 7 ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
7 | bnj151.12 | . . . . . . 7 ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) | |
8 | bnj151.13 | . . . . . . 7 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
9 | bnj151.14 | . . . . . . 7 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
10 | bnj151.15 | . . . . . . 7 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
11 | bnj151.16 | . . . . . . 7 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj150 32856 | . . . . . 6 ⊢ 𝜃0 |
13 | 12, 6 | mpbi 229 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
14 | bnj151.11 | . . . . . . 7 ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
15 | bnj151.17 | . . . . . . 7 ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) | |
16 | bnj151.18 | . . . . . . 7 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
17 | bnj151.19 | . . . . . . 7 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
18 | bnj151.20 | . . . . . . 7 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
19 | 1, 4 | bnj118 32849 | . . . . . . 7 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
20 | 14, 15, 16, 17, 18, 19 | bnj149 32855 | . . . . . 6 ⊢ 𝜃1 |
21 | 20, 14 | mpbi 229 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
22 | df-eu 2569 | . . . . 5 ⊢ (∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ (∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ∧ ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
23 | 13, 21, 22 | sylanbrc 583 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
24 | bnj151.4 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
25 | bnj151.9 | . . . . 5 ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) | |
26 | 24, 4, 5, 25 | bnj130 32854 | . . . 4 ⊢ (𝜃′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
27 | 23, 26 | mpbir 230 | . . 3 ⊢ 𝜃′ |
28 | sbceq1a 3727 | . . . 4 ⊢ (𝑛 = 1o → (𝜃 ↔ [1o / 𝑛]𝜃)) | |
29 | 28, 25 | bitr4di 289 | . . 3 ⊢ (𝑛 = 1o → (𝜃 ↔ 𝜃′)) |
30 | 27, 29 | mpbiri 257 | . 2 ⊢ (𝑛 = 1o → 𝜃) |
31 | 30 | a1d 25 | 1 ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃*wmo 2538 ∃!weu 2568 ∀wral 3064 [wsbc 3716 ∖ cdif 3884 ∅c0 4256 {csn 4561 〈cop 4567 ∪ ciun 4924 class class class wbr 5074 E cep 5494 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 1oc1o 8290 predc-bnj14 32667 FrSe w-bnj15 32671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1o 8297 df-bnj13 32670 df-bnj15 32672 |
This theorem is referenced by: bnj153 32860 |
Copyright terms: Public domain | W3C validator |