Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj151 Structured version   Visualization version   GIF version

Theorem bnj151 34187
Description: Technical lemma for bnj153 34190. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj151.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj151.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj151.3 𝐷 = (ω ∖ {∅})
bnj151.4 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj151.5 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
bnj151.6 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj151.7 (𝜑′[1o / 𝑛]𝜑)
bnj151.8 (𝜓′[1o / 𝑛]𝜓)
bnj151.9 (𝜃′[1o / 𝑛]𝜃)
bnj151.10 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj151.11 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj151.12 (𝜁′[1o / 𝑛]𝜁)
bnj151.13 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj151.14 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj151.15 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj151.16 (𝜁″[𝐹 / 𝑓]𝜁′)
bnj151.17 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj151.18 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj151.19 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj151.20 (𝜓1[𝑔 / 𝑓]𝜓′)
Assertion
Ref Expression
bnj151 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝐴,𝑛,𝑓,𝑥   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑔,𝑥   𝑅,𝑛   𝑓,𝜁1   𝑓,𝜁″   𝑔,𝜁0   𝑖,𝑛,𝑦   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑖,𝑚)   𝐷(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑖,𝑚)   𝐹(𝑥,𝑔,𝑚,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜑″(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁″(𝑥,𝑦,𝑔,𝑖,𝑚,𝑛)   𝜃0(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁0(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜑1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁1(𝑥,𝑦,𝑔,𝑖,𝑚,𝑛)

Proof of Theorem bnj151
StepHypRef Expression
1 bnj151.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj151.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj151.6 . . . . . . 7 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
4 bnj151.7 . . . . . . 7 (𝜑′[1o / 𝑛]𝜑)
5 bnj151.8 . . . . . . 7 (𝜓′[1o / 𝑛]𝜓)
6 bnj151.10 . . . . . . 7 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
7 bnj151.12 . . . . . . 7 (𝜁′[1o / 𝑛]𝜁)
8 bnj151.13 . . . . . . 7 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
9 bnj151.14 . . . . . . 7 (𝜑″[𝐹 / 𝑓]𝜑′)
10 bnj151.15 . . . . . . 7 (𝜓″[𝐹 / 𝑓]𝜓′)
11 bnj151.16 . . . . . . 7 (𝜁″[𝐹 / 𝑓]𝜁′)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj150 34186 . . . . . 6 𝜃0
1312, 6mpbi 229 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′))
14 bnj151.11 . . . . . . 7 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
15 bnj151.17 . . . . . . 7 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
16 bnj151.18 . . . . . . 7 (𝜁1[𝑔 / 𝑓]𝜁0)
17 bnj151.19 . . . . . . 7 (𝜑1[𝑔 / 𝑓]𝜑′)
18 bnj151.20 . . . . . . 7 (𝜓1[𝑔 / 𝑓]𝜓′)
191, 4bnj118 34179 . . . . . . 7 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2014, 15, 16, 17, 18, 19bnj149 34185 . . . . . 6 𝜃1
2120, 14mpbi 229 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
22 df-eu 2562 . . . . 5 (∃!𝑓(𝑓 Fn 1o𝜑′𝜓′) ↔ (∃𝑓(𝑓 Fn 1o𝜑′𝜓′) ∧ ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2313, 21, 22sylanbrc 582 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′))
24 bnj151.4 . . . . 5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
25 bnj151.9 . . . . 5 (𝜃′[1o / 𝑛]𝜃)
2624, 4, 5, 25bnj130 34184 . . . 4 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2723, 26mpbir 230 . . 3 𝜃′
28 sbceq1a 3788 . . . 4 (𝑛 = 1o → (𝜃[1o / 𝑛]𝜃))
2928, 25bitr4di 289 . . 3 (𝑛 = 1o → (𝜃𝜃′))
3027, 29mpbiri 258 . 2 (𝑛 = 1o𝜃)
3130a1d 25 1 (𝑛 = 1o → ((𝑛𝐷𝜏) → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  ∃*wmo 2531  ∃!weu 2561  wral 3060  [wsbc 3777  cdif 3945  c0 4322  {csn 4628  cop 4634   ciun 4997   class class class wbr 5148   E cep 5579  suc csuc 6366   Fn wfn 6538  cfv 6543  ωcom 7858  1oc1o 8462   predc-bnj14 33998   FrSe w-bnj15 34002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1o 8469  df-bnj13 34001  df-bnj15 34003
This theorem is referenced by:  bnj153  34190
  Copyright terms: Public domain W3C validator