![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj151 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 34190. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj151.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj151.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj151.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj151.4 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.5 | ⊢ (𝜏 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜃)) |
bnj151.6 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.7 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
bnj151.8 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
bnj151.9 | ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) |
bnj151.10 | ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.11 | ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.12 | ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) |
bnj151.13 | ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} |
bnj151.14 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj151.15 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj151.16 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
bnj151.17 | ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
bnj151.18 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj151.19 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj151.20 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj151 | ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj151.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj151.2 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj151.6 | . . . . . . 7 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
4 | bnj151.7 | . . . . . . 7 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
5 | bnj151.8 | . . . . . . 7 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
6 | bnj151.10 | . . . . . . 7 ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
7 | bnj151.12 | . . . . . . 7 ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) | |
8 | bnj151.13 | . . . . . . 7 ⊢ 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} | |
9 | bnj151.14 | . . . . . . 7 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
10 | bnj151.15 | . . . . . . 7 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
11 | bnj151.16 | . . . . . . 7 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj150 34186 | . . . . . 6 ⊢ 𝜃0 |
13 | 12, 6 | mpbi 229 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
14 | bnj151.11 | . . . . . . 7 ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
15 | bnj151.17 | . . . . . . 7 ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) | |
16 | bnj151.18 | . . . . . . 7 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
17 | bnj151.19 | . . . . . . 7 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
18 | bnj151.20 | . . . . . . 7 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
19 | 1, 4 | bnj118 34179 | . . . . . . 7 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
20 | 14, 15, 16, 17, 18, 19 | bnj149 34185 | . . . . . 6 ⊢ 𝜃1 |
21 | 20, 14 | mpbi 229 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
22 | df-eu 2562 | . . . . 5 ⊢ (∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ (∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ∧ ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
23 | 13, 21, 22 | sylanbrc 582 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
24 | bnj151.4 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
25 | bnj151.9 | . . . . 5 ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) | |
26 | 24, 4, 5, 25 | bnj130 34184 | . . . 4 ⊢ (𝜃′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
27 | 23, 26 | mpbir 230 | . . 3 ⊢ 𝜃′ |
28 | sbceq1a 3788 | . . . 4 ⊢ (𝑛 = 1o → (𝜃 ↔ [1o / 𝑛]𝜃)) | |
29 | 28, 25 | bitr4di 289 | . . 3 ⊢ (𝑛 = 1o → (𝜃 ↔ 𝜃′)) |
30 | 27, 29 | mpbiri 258 | . 2 ⊢ (𝑛 = 1o → 𝜃) |
31 | 30 | a1d 25 | 1 ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃*wmo 2531 ∃!weu 2561 ∀wral 3060 [wsbc 3777 ∖ cdif 3945 ∅c0 4322 {csn 4628 ⟨cop 4634 ∪ ciun 4997 class class class wbr 5148 E cep 5579 suc csuc 6366 Fn wfn 6538 ‘cfv 6543 ωcom 7858 1oc1o 8462 predc-bnj14 33998 FrSe w-bnj15 34002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8469 df-bnj13 34001 df-bnj15 34003 |
This theorem is referenced by: bnj153 34190 |
Copyright terms: Public domain | W3C validator |