| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj151 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj153 34877. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj151.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj151.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj151.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj151.4 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| bnj151.5 | ⊢ (𝜏 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜃)) |
| bnj151.6 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| bnj151.7 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
| bnj151.8 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
| bnj151.9 | ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) |
| bnj151.10 | ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
| bnj151.11 | ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
| bnj151.12 | ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) |
| bnj151.13 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| bnj151.14 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
| bnj151.15 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
| bnj151.16 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
| bnj151.17 | ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
| bnj151.18 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
| bnj151.19 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
| bnj151.20 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
| Ref | Expression |
|---|---|
| bnj151 | ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj151.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 2 | bnj151.2 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | bnj151.6 | . . . . . . 7 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
| 4 | bnj151.7 | . . . . . . 7 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
| 5 | bnj151.8 | . . . . . . 7 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
| 6 | bnj151.10 | . . . . . . 7 ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
| 7 | bnj151.12 | . . . . . . 7 ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) | |
| 8 | bnj151.13 | . . . . . . 7 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 9 | bnj151.14 | . . . . . . 7 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
| 10 | bnj151.15 | . . . . . . 7 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
| 11 | bnj151.16 | . . . . . . 7 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj150 34873 | . . . . . 6 ⊢ 𝜃0 |
| 13 | 12, 6 | mpbi 230 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
| 14 | bnj151.11 | . . . . . . 7 ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
| 15 | bnj151.17 | . . . . . . 7 ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) | |
| 16 | bnj151.18 | . . . . . . 7 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
| 17 | bnj151.19 | . . . . . . 7 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
| 18 | bnj151.20 | . . . . . . 7 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
| 19 | 1, 4 | bnj118 34866 | . . . . . . 7 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 20 | 14, 15, 16, 17, 18, 19 | bnj149 34872 | . . . . . 6 ⊢ 𝜃1 |
| 21 | 20, 14 | mpbi 230 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
| 22 | df-eu 2563 | . . . . 5 ⊢ (∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ (∃𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ∧ ∃*𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) | |
| 23 | 13, 21, 22 | sylanbrc 583 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) |
| 24 | bnj151.4 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
| 25 | bnj151.9 | . . . . 5 ⊢ (𝜃′ ↔ [1o / 𝑛]𝜃) | |
| 26 | 24, 4, 5, 25 | bnj130 34871 | . . . 4 ⊢ (𝜃′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
| 27 | 23, 26 | mpbir 231 | . . 3 ⊢ 𝜃′ |
| 28 | sbceq1a 3767 | . . . 4 ⊢ (𝑛 = 1o → (𝜃 ↔ [1o / 𝑛]𝜃)) | |
| 29 | 28, 25 | bitr4di 289 | . . 3 ⊢ (𝑛 = 1o → (𝜃 ↔ 𝜃′)) |
| 30 | 27, 29 | mpbiri 258 | . 2 ⊢ (𝑛 = 1o → 𝜃) |
| 31 | 30 | a1d 25 | 1 ⊢ (𝑛 = 1o → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 ∃!weu 2562 ∀wral 3045 [wsbc 3756 ∖ cdif 3914 ∅c0 4299 {csn 4592 〈cop 4598 ∪ ciun 4958 class class class wbr 5110 E cep 5540 suc csuc 6337 Fn wfn 6509 ‘cfv 6514 ωcom 7845 1oc1o 8430 predc-bnj14 34685 FrSe w-bnj15 34689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1o 8437 df-bnj13 34688 df-bnj15 34690 |
| This theorem is referenced by: bnj153 34877 |
| Copyright terms: Public domain | W3C validator |