![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj151 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 31467. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj151.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj151.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj151.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj151.4 | ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.5 | ⊢ (𝜏 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜃)) |
bnj151.6 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj151.7 | ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) |
bnj151.8 | ⊢ (𝜓′ ↔ [1𝑜 / 𝑛]𝜓) |
bnj151.9 | ⊢ (𝜃′ ↔ [1𝑜 / 𝑛]𝜃) |
bnj151.10 | ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.11 | ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
bnj151.12 | ⊢ (𝜁′ ↔ [1𝑜 / 𝑛]𝜁) |
bnj151.13 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
bnj151.14 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj151.15 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj151.16 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
bnj151.17 | ⊢ (𝜁0 ↔ (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
bnj151.18 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj151.19 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj151.20 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj151 | ⊢ (𝑛 = 1𝑜 → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj151.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj151.2 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj151.6 | . . . . . . 7 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
4 | bnj151.7 | . . . . . . 7 ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) | |
5 | bnj151.8 | . . . . . . 7 ⊢ (𝜓′ ↔ [1𝑜 / 𝑛]𝜓) | |
6 | bnj151.10 | . . . . . . 7 ⊢ (𝜃0 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) | |
7 | bnj151.12 | . . . . . . 7 ⊢ (𝜁′ ↔ [1𝑜 / 𝑛]𝜁) | |
8 | bnj151.13 | . . . . . . 7 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
9 | bnj151.14 | . . . . . . 7 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
10 | bnj151.15 | . . . . . . 7 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
11 | bnj151.16 | . . . . . . 7 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj150 31463 | . . . . . 6 ⊢ 𝜃0 |
13 | 12, 6 | mpbi 222 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
14 | bnj151.11 | . . . . . . 7 ⊢ (𝜃1 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) | |
15 | bnj151.17 | . . . . . . 7 ⊢ (𝜁0 ↔ (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) | |
16 | bnj151.18 | . . . . . . 7 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
17 | bnj151.19 | . . . . . . 7 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
18 | bnj151.20 | . . . . . . 7 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
19 | 1, 4 | bnj118 31456 | . . . . . . 7 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
20 | 14, 15, 16, 17, 18, 19 | bnj149 31462 | . . . . . 6 ⊢ 𝜃1 |
21 | 20, 14 | mpbi 222 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃*𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
22 | df-eu 2609 | . . . . 5 ⊢ (∃!𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ (∃𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ∧ ∃*𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) | |
23 | 13, 21, 22 | sylanbrc 579 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
24 | bnj151.4 | . . . . 5 ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
25 | bnj151.9 | . . . . 5 ⊢ (𝜃′ ↔ [1𝑜 / 𝑛]𝜃) | |
26 | 24, 4, 5, 25 | bnj130 31461 | . . . 4 ⊢ (𝜃′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
27 | 23, 26 | mpbir 223 | . . 3 ⊢ 𝜃′ |
28 | sbceq1a 3644 | . . . 4 ⊢ (𝑛 = 1𝑜 → (𝜃 ↔ [1𝑜 / 𝑛]𝜃)) | |
29 | 28, 25 | syl6bbr 281 | . . 3 ⊢ (𝑛 = 1𝑜 → (𝜃 ↔ 𝜃′)) |
30 | 27, 29 | mpbiri 250 | . 2 ⊢ (𝑛 = 1𝑜 → 𝜃) |
31 | 30 | a1d 25 | 1 ⊢ (𝑛 = 1𝑜 → ((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∃*wmo 2589 ∃!weu 2608 ∀wral 3089 [wsbc 3633 ∖ cdif 3766 ∅c0 4115 {csn 4368 〈cop 4374 ∪ ciun 4710 class class class wbr 4843 E cep 5224 suc csuc 5943 Fn wfn 6096 ‘cfv 6101 ωcom 7299 1𝑜c1o 7792 predc-bnj14 31274 FrSe w-bnj15 31278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-1o 7799 df-bnj13 31277 df-bnj15 31279 |
This theorem is referenced by: bnj153 31467 |
Copyright terms: Public domain | W3C validator |