Proof of Theorem bnj919
Step | Hyp | Ref
| Expression |
1 | | bnj919.4 |
. 2
⊢ (𝜒′ ↔ [𝑃 / 𝑛]𝜒) |
2 | | bnj919.1 |
. . 3
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
3 | 2 | sbcbii 3755 |
. 2
⊢
([𝑃 / 𝑛]𝜒 ↔ [𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
4 | | bnj919.5 |
. . 3
⊢ 𝑃 ∈ V |
5 | | df-bnj17 32378 |
. . . . 5
⊢ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) ↔ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) ∧ 𝜓′)) |
6 | | nfv 1922 |
. . . . . . 7
⊢
Ⅎ𝑛 𝑃 ∈ 𝐷 |
7 | | nfv 1922 |
. . . . . . 7
⊢
Ⅎ𝑛 𝐹 Fn 𝑃 |
8 | | bnj919.2 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑃 / 𝑛]𝜑) |
9 | | nfsbc1v 3714 |
. . . . . . . 8
⊢
Ⅎ𝑛[𝑃 / 𝑛]𝜑 |
10 | 8, 9 | nfxfr 1860 |
. . . . . . 7
⊢
Ⅎ𝑛𝜑′ |
11 | 6, 7, 10 | nf3an 1909 |
. . . . . 6
⊢
Ⅎ𝑛(𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) |
12 | | bnj919.3 |
. . . . . . 7
⊢ (𝜓′ ↔ [𝑃 / 𝑛]𝜓) |
13 | | nfsbc1v 3714 |
. . . . . . 7
⊢
Ⅎ𝑛[𝑃 / 𝑛]𝜓 |
14 | 12, 13 | nfxfr 1860 |
. . . . . 6
⊢
Ⅎ𝑛𝜓′ |
15 | 11, 14 | nfan 1907 |
. . . . 5
⊢
Ⅎ𝑛((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) ∧ 𝜓′) |
16 | 5, 15 | nfxfr 1860 |
. . . 4
⊢
Ⅎ𝑛(𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) |
17 | | eleq1 2825 |
. . . . . 6
⊢ (𝑛 = 𝑃 → (𝑛 ∈ 𝐷 ↔ 𝑃 ∈ 𝐷)) |
18 | | fneq2 6471 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝐹 Fn 𝑛 ↔ 𝐹 Fn 𝑃)) |
19 | | sbceq1a 3705 |
. . . . . . . 8
⊢ (𝑛 = 𝑃 → (𝜑 ↔ [𝑃 / 𝑛]𝜑)) |
20 | 19, 8 | bitr4di 292 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝜑 ↔ 𝜑′)) |
21 | | sbceq1a 3705 |
. . . . . . . 8
⊢ (𝑛 = 𝑃 → (𝜓 ↔ [𝑃 / 𝑛]𝜓)) |
22 | 21, 12 | bitr4di 292 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝜓 ↔ 𝜓′)) |
23 | 18, 20, 22 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑛 = 𝑃 → ((𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
24 | 17, 23 | anbi12d 634 |
. . . . 5
⊢ (𝑛 = 𝑃 → ((𝑛 ∈ 𝐷 ∧ (𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ (𝑃 ∈ 𝐷 ∧ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)))) |
25 | | bnj252 32394 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
26 | | bnj252 32394 |
. . . . 5
⊢ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) ↔ (𝑃 ∈ 𝐷 ∧ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
27 | 24, 25, 26 | 3bitr4g 317 |
. . . 4
⊢ (𝑛 = 𝑃 → ((𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
28 | 16, 27 | sbciegf 3733 |
. . 3
⊢ (𝑃 ∈ V → ([𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
29 | 4, 28 | ax-mp 5 |
. 2
⊢
([𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) |
30 | 1, 3, 29 | 3bitri 300 |
1
⊢ (𝜒′ ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) |