Proof of Theorem bnj919
| Step | Hyp | Ref
| Expression |
| 1 | | bnj919.4 |
. 2
⊢ (𝜒′ ↔ [𝑃 / 𝑛]𝜒) |
| 2 | | bnj919.1 |
. . 3
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 3 | 2 | sbcbii 3827 |
. 2
⊢
([𝑃 / 𝑛]𝜒 ↔ [𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 4 | | bnj919.5 |
. . 3
⊢ 𝑃 ∈ V |
| 5 | | df-bnj17 34723 |
. . . . 5
⊢ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) ↔ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) ∧ 𝜓′)) |
| 6 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑛 𝑃 ∈ 𝐷 |
| 7 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑛 𝐹 Fn 𝑃 |
| 8 | | bnj919.2 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑃 / 𝑛]𝜑) |
| 9 | | nfsbc1v 3790 |
. . . . . . . 8
⊢
Ⅎ𝑛[𝑃 / 𝑛]𝜑 |
| 10 | 8, 9 | nfxfr 1853 |
. . . . . . 7
⊢
Ⅎ𝑛𝜑′ |
| 11 | 6, 7, 10 | nf3an 1901 |
. . . . . 6
⊢
Ⅎ𝑛(𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) |
| 12 | | bnj919.3 |
. . . . . . 7
⊢ (𝜓′ ↔ [𝑃 / 𝑛]𝜓) |
| 13 | | nfsbc1v 3790 |
. . . . . . 7
⊢
Ⅎ𝑛[𝑃 / 𝑛]𝜓 |
| 14 | 12, 13 | nfxfr 1853 |
. . . . . 6
⊢
Ⅎ𝑛𝜓′ |
| 15 | 11, 14 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑛((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′) ∧ 𝜓′) |
| 16 | 5, 15 | nfxfr 1853 |
. . . 4
⊢
Ⅎ𝑛(𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) |
| 17 | | eleq1 2823 |
. . . . . 6
⊢ (𝑛 = 𝑃 → (𝑛 ∈ 𝐷 ↔ 𝑃 ∈ 𝐷)) |
| 18 | | fneq2 6635 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝐹 Fn 𝑛 ↔ 𝐹 Fn 𝑃)) |
| 19 | | sbceq1a 3781 |
. . . . . . . 8
⊢ (𝑛 = 𝑃 → (𝜑 ↔ [𝑃 / 𝑛]𝜑)) |
| 20 | 19, 8 | bitr4di 289 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝜑 ↔ 𝜑′)) |
| 21 | | sbceq1a 3781 |
. . . . . . . 8
⊢ (𝑛 = 𝑃 → (𝜓 ↔ [𝑃 / 𝑛]𝜓)) |
| 22 | 21, 12 | bitr4di 289 |
. . . . . . 7
⊢ (𝑛 = 𝑃 → (𝜓 ↔ 𝜓′)) |
| 23 | 18, 20, 22 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑛 = 𝑃 → ((𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
| 24 | 17, 23 | anbi12d 632 |
. . . . 5
⊢ (𝑛 = 𝑃 → ((𝑛 ∈ 𝐷 ∧ (𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ (𝑃 ∈ 𝐷 ∧ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)))) |
| 25 | | bnj252 34739 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 26 | | bnj252 34739 |
. . . . 5
⊢ ((𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′) ↔ (𝑃 ∈ 𝐷 ∧ (𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
| 27 | 24, 25, 26 | 3bitr4g 314 |
. . . 4
⊢ (𝑛 = 𝑃 → ((𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
| 28 | 16, 27 | sbciegf 3809 |
. . 3
⊢ (𝑃 ∈ V → ([𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′))) |
| 29 | 4, 28 | ax-mp 5 |
. 2
⊢
([𝑃 / 𝑛](𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) |
| 30 | 1, 3, 29 | 3bitri 297 |
1
⊢ (𝜒′ ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) |