![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj528 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34451. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj528.1 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) |
Ref | Expression |
---|---|
bnj528 | ⊢ 𝐺 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj528.1 | . 2 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) | |
2 | 1 | bnj918 34296 | 1 ⊢ 𝐺 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∪ cun 3939 {csn 4621 ⟨cop 4627 ∪ ciun 4988 ‘cfv 6534 predc-bnj14 34218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-sn 4622 df-pr 4624 df-uni 4901 |
This theorem is referenced by: bnj600 34449 bnj908 34461 |
Copyright terms: Public domain | W3C validator |