Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj561 Structured version   Visualization version   GIF version

Theorem bnj561 32783
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj561.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj561.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj561.37 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj561 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)

Proof of Theorem bnj561
StepHypRef Expression
1 bnj561.18 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
2 bnj561.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
31, 2bnj556 32780 . 2 (𝜂𝜎)
4 bnj561.37 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
53, 4syl3an3 1163 1 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  suc csuc 6253   Fn wfn 6413  ωcom 7687  w-bnj17 32565   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-suc 6257  df-bnj17 32566
This theorem is referenced by:  bnj600  32799  bnj908  32811
  Copyright terms: Public domain W3C validator