Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj562 Structured version   Visualization version   GIF version

Theorem bnj562 34897
Description: Technical lemma for bnj852 34914. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj562.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj562.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj562.38 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
Assertion
Ref Expression
bnj562 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)

Proof of Theorem bnj562
StepHypRef Expression
1 bnj562.18 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
2 bnj562.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
31, 2bnj556 34893 . 2 (𝜂𝜎)
4 bnj562.38 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
53, 4syl3an3 1164 1 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  suc csuc 6388  ωcom 7887  w-bnj17 34679   FrSe w-bnj15 34685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-sn 4632  df-suc 6392  df-bnj17 34680
This theorem is referenced by:  bnj600  34912  bnj908  34924
  Copyright terms: Public domain W3C validator