Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj941 Structured version   Visualization version   GIF version

Theorem bnj941 32652
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj941.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj941 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))

Proof of Theorem bnj941
StepHypRef Expression
1 bnj941.1 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 opeq2 4802 . . . . . . 7 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ⟨𝑛, 𝐶⟩ = ⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩)
32sneqd 4570 . . . . . 6 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {⟨𝑛, 𝐶⟩} = {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
43uneq2d 4093 . . . . 5 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
51, 4syl5eq 2791 . . . 4 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
65fneq1d 6510 . . 3 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝))
76imbi2d 340 . 2 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)))
8 eqid 2738 . . 3 (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
9 0ex 5226 . . . 4 ∅ ∈ V
109elimel 4525 . . 3 if(𝐶 ∈ V, 𝐶, ∅) ∈ V
118, 10bnj927 32649 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)
127, 11dedth 4514 1 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  ifcif 4456  {csn 4558  cop 4564  suc csuc 6253   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-suc 6257  df-fun 6420  df-fn 6421
This theorem is referenced by:  bnj945  32653  bnj910  32828
  Copyright terms: Public domain W3C validator