| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj941 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj941.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj941 | ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj941.1 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | opeq2 4823 | . . . . . . 7 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 〈𝑛, 𝐶〉 = 〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉) | |
| 3 | 2 | sneqd 4585 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {〈𝑛, 𝐶〉} = {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) |
| 4 | 3 | uneq2d 4115 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {〈𝑛, 𝐶〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
| 5 | 1, 4 | eqtrid 2778 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
| 6 | 5 | fneq1d 6574 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝)) |
| 7 | 6 | imbi2d 340 | . 2 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝))) |
| 8 | eqid 2731 | . . 3 ⊢ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) | |
| 9 | 0ex 5243 | . . . 4 ⊢ ∅ ∈ V | |
| 10 | 9 | elimel 4542 | . . 3 ⊢ if(𝐶 ∈ V, 𝐶, ∅) ∈ V |
| 11 | 8, 10 | bnj927 34781 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝) |
| 12 | 7, 11 | dedth 4531 | 1 ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4280 ifcif 4472 {csn 4573 〈cop 4579 suc csuc 6308 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-suc 6312 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: bnj945 34785 bnj910 34960 |
| Copyright terms: Public domain | W3C validator |