| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj941 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj941.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj941 | ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj941.1 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | opeq2 4825 | . . . . . . 7 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 〈𝑛, 𝐶〉 = 〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉) | |
| 3 | 2 | sneqd 4589 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {〈𝑛, 𝐶〉} = {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) |
| 4 | 3 | uneq2d 4119 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {〈𝑛, 𝐶〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
| 5 | 1, 4 | eqtrid 2776 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
| 6 | 5 | fneq1d 6575 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝)) |
| 7 | 6 | imbi2d 340 | . 2 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝))) |
| 8 | eqid 2729 | . . 3 ⊢ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) | |
| 9 | 0ex 5246 | . . . 4 ⊢ ∅ ∈ V | |
| 10 | 9 | elimel 4546 | . . 3 ⊢ if(𝐶 ∈ V, 𝐶, ∅) ∈ V |
| 11 | 8, 10 | bnj927 34752 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝) |
| 12 | 7, 11 | dedth 4535 | 1 ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ∅c0 4284 ifcif 4476 {csn 4577 〈cop 4583 suc csuc 6309 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-reg 9484 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-suc 6313 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: bnj945 34756 bnj910 34931 |
| Copyright terms: Public domain | W3C validator |