Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj941 Structured version   Visualization version   GIF version

Theorem bnj941 34755
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj941.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj941 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))

Proof of Theorem bnj941
StepHypRef Expression
1 bnj941.1 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 opeq2 4834 . . . . . . 7 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ⟨𝑛, 𝐶⟩ = ⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩)
32sneqd 4597 . . . . . 6 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {⟨𝑛, 𝐶⟩} = {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
43uneq2d 4127 . . . . 5 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
51, 4eqtrid 2776 . . . 4 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
65fneq1d 6593 . . 3 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝))
76imbi2d 340 . 2 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)))
8 eqid 2729 . . 3 (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
9 0ex 5257 . . . 4 ∅ ∈ V
109elimel 4554 . . 3 if(𝐶 ∈ V, 𝐶, ∅) ∈ V
118, 10bnj927 34752 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)
127, 11dedth 4543 1 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  c0 4292  ifcif 4484  {csn 4585  cop 4591  suc csuc 6322   Fn wfn 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-suc 6326  df-fun 6501  df-fn 6502
This theorem is referenced by:  bnj945  34756  bnj910  34931
  Copyright terms: Public domain W3C validator