Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj941 Structured version   Visualization version   GIF version

Theorem bnj941 34762
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj941.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj941 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))

Proof of Theorem bnj941
StepHypRef Expression
1 bnj941.1 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 opeq2 4838 . . . . . . 7 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ⟨𝑛, 𝐶⟩ = ⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩)
32sneqd 4601 . . . . . 6 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {⟨𝑛, 𝐶⟩} = {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
43uneq2d 4131 . . . . 5 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
51, 4eqtrid 2776 . . . 4 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
65fneq1d 6611 . . 3 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝))
76imbi2d 340 . 2 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)))
8 eqid 2729 . . 3 (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
9 0ex 5262 . . . 4 ∅ ∈ V
109elimel 4558 . . 3 if(𝐶 ∈ V, 𝐶, ∅) ∈ V
118, 10bnj927 34759 . 2 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) Fn 𝑝)
127, 11dedth 4547 1 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  c0 4296  ifcif 4488  {csn 4589  cop 4595  suc csuc 6334   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-suc 6338  df-fun 6513  df-fn 6514
This theorem is referenced by:  bnj945  34763  bnj910  34938
  Copyright terms: Public domain W3C validator