![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj941 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj941.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj941 | ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj941.1 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | opeq2 4879 | . . . . . . 7 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 〈𝑛, 𝐶〉 = 〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉) | |
3 | 2 | sneqd 4643 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {〈𝑛, 𝐶〉} = {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) |
4 | 3 | uneq2d 4178 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {〈𝑛, 𝐶〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
5 | 1, 4 | eqtrid 2787 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
6 | 5 | fneq1d 6662 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝)) |
7 | 6 | imbi2d 340 | . 2 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝))) |
8 | eqid 2735 | . . 3 ⊢ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) | |
9 | 0ex 5313 | . . . 4 ⊢ ∅ ∈ V | |
10 | 9 | elimel 4600 | . . 3 ⊢ if(𝐶 ∈ V, 𝐶, ∅) ∈ V |
11 | 8, 10 | bnj927 34762 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝) |
12 | 7, 11 | dedth 4589 | 1 ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∅c0 4339 ifcif 4531 {csn 4631 〈cop 4637 suc csuc 6388 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-reg 9630 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-suc 6392 df-fun 6565 df-fn 6566 |
This theorem is referenced by: bnj945 34766 bnj910 34941 |
Copyright terms: Public domain | W3C validator |