Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj941 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj941.1 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj941 | ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj941.1 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | opeq2 4785 | . . . . . . 7 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 〈𝑛, 𝐶〉 = 〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉) | |
3 | 2 | sneqd 4553 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {〈𝑛, 𝐶〉} = {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) |
4 | 3 | uneq2d 4077 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {〈𝑛, 𝐶〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
5 | 1, 4 | syl5eq 2790 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉})) |
6 | 5 | fneq1d 6472 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝐺 Fn 𝑝 ↔ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝)) |
7 | 6 | imbi2d 344 | . 2 ⊢ (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝))) |
8 | eqid 2737 | . . 3 ⊢ (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) = (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) | |
9 | 0ex 5200 | . . . 4 ⊢ ∅ ∈ V | |
10 | 9 | elimel 4508 | . . 3 ⊢ if(𝐶 ∈ V, 𝐶, ∅) ∈ V |
11 | 8, 10 | bnj927 32461 | . 2 ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → (𝑓 ∪ {〈𝑛, if(𝐶 ∈ V, 𝐶, ∅)〉}) Fn 𝑝) |
12 | 7, 11 | dedth 4497 | 1 ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ∅c0 4237 ifcif 4439 {csn 4541 〈cop 4547 suc csuc 6215 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-reg 9208 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-suc 6219 df-fun 6382 df-fn 6383 |
This theorem is referenced by: bnj945 32466 bnj910 32641 |
Copyright terms: Public domain | W3C validator |