Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1498 Structured version   Visualization version   GIF version

Theorem bnj1498 33762
Description: Technical lemma for bnj60 33763. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1498.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1498.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1498.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1498.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1498 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1498
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4963 . . . . . . 7 (𝑧 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑧 ∈ dom 𝑓)
2 bnj1498.3 . . . . . . . . . . . . . . . 16 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
32bnj1436 33540 . . . . . . . . . . . . . . 15 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
43bnj1299 33519 . . . . . . . . . . . . . 14 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
5 fndm 6610 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
64, 5bnj31 33420 . . . . . . . . . . . . 13 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
76bnj1196 33495 . . . . . . . . . . . 12 (𝑓𝐶 → ∃𝑑(𝑑𝐵 ∧ dom 𝑓 = 𝑑))
8 bnj1498.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
98bnj1436 33540 . . . . . . . . . . . . . 14 (𝑑𝐵 → (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
109simpld 495 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
1110anim1i 615 . . . . . . . . . . . 12 ((𝑑𝐵 ∧ dom 𝑓 = 𝑑) → (𝑑𝐴 ∧ dom 𝑓 = 𝑑))
127, 11bnj593 33446 . . . . . . . . . . 11 (𝑓𝐶 → ∃𝑑(𝑑𝐴 ∧ dom 𝑓 = 𝑑))
13 sseq1 3972 . . . . . . . . . . . 12 (dom 𝑓 = 𝑑 → (dom 𝑓𝐴𝑑𝐴))
1413biimparc 480 . . . . . . . . . . 11 ((𝑑𝐴 ∧ dom 𝑓 = 𝑑) → dom 𝑓𝐴)
1512, 14bnj593 33446 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑dom 𝑓𝐴)
1615bnj937 33472 . . . . . . . . 9 (𝑓𝐶 → dom 𝑓𝐴)
1716sselda 3947 . . . . . . . 8 ((𝑓𝐶𝑧 ∈ dom 𝑓) → 𝑧𝐴)
1817rexlimiva 3140 . . . . . . 7 (∃𝑓𝐶 𝑧 ∈ dom 𝑓𝑧𝐴)
191, 18sylbi 216 . . . . . 6 (𝑧 𝑓𝐶 dom 𝑓𝑧𝐴)
202bnj1317 33522 . . . . . . 7 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
2120bnj1400 33536 . . . . . 6 dom 𝐶 = 𝑓𝐶 dom 𝑓
2219, 21eleq2s 2850 . . . . 5 (𝑧 ∈ dom 𝐶𝑧𝐴)
23 bnj1498.4 . . . . . 6 𝐹 = 𝐶
2423dmeqi 5865 . . . . 5 dom 𝐹 = dom 𝐶
2522, 24eleq2s 2850 . . . 4 (𝑧 ∈ dom 𝐹𝑧𝐴)
2625ssriv 3951 . . 3 dom 𝐹𝐴
2726a1i 11 . 2 (𝑅 FrSe 𝐴 → dom 𝐹𝐴)
28 bnj1498.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
298, 28, 2bnj1493 33760 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
30 vsnid 4628 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
31 elun1 4141 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
3230, 31ax-mp 5 . . . . . . . . . 10 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
33 eleq2 2821 . . . . . . . . . 10 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → (𝑥 ∈ dom 𝑓𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
3432, 33mpbiri 257 . . . . . . . . 9 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → 𝑥 ∈ dom 𝑓)
3534reximi 3083 . . . . . . . 8 (∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3635ralimi 3082 . . . . . . 7 (∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
3729, 36syl 17 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
38 eliun 4963 . . . . . . 7 (𝑥 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3938ralbii 3092 . . . . . 6 (∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
4037, 39sylibr 233 . . . . 5 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
41 nfcv 2902 . . . . . 6 𝑥𝐴
428bnj1309 33723 . . . . . . . . 9 (𝑡𝐵 → ∀𝑥 𝑡𝐵)
432, 42bnj1307 33724 . . . . . . . 8 (𝑡𝐶 → ∀𝑥 𝑡𝐶)
4443nfcii 2886 . . . . . . 7 𝑥𝐶
45 nfcv 2902 . . . . . . 7 𝑥dom 𝑓
4644, 45nfiun 4989 . . . . . 6 𝑥 𝑓𝐶 dom 𝑓
4741, 46dfss3f 3938 . . . . 5 (𝐴 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
4840, 47sylibr 233 . . . 4 (𝑅 FrSe 𝐴𝐴 𝑓𝐶 dom 𝑓)
4948, 21sseqtrrdi 3998 . . 3 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐶)
5049, 24sseqtrrdi 3998 . 2 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐹)
5127, 50eqssd 3964 1 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2708  wral 3060  wrex 3069  cun 3911  wss 3913  {csn 4591  cop 4597   cuni 4870   ciun 4959  dom cdm 5638  cres 5640   Fn wfn 6496  cfv 6501   predc-bnj14 33389   FrSe w-bnj15 33393   trClc-bnj18 33395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-reg 9537  ax-inf2 9586
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-bnj17 33388  df-bnj14 33390  df-bnj13 33392  df-bnj15 33394  df-bnj18 33396  df-bnj19 33398
This theorem is referenced by:  bnj60  33763
  Copyright terms: Public domain W3C validator