Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif2 | Structured version Visualization version GIF version |
Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.) |
Ref | Expression |
---|---|
brvdif2 | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brvdif 36379 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) | |
2 | df-br 5079 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
3 | 1, 2 | xchbinx 333 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 〈cop 4572 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |