Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvdif2 Structured version   Visualization version   GIF version

Theorem brvdif2 36328
Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.)
Assertion
Ref Expression
brvdif2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)

Proof of Theorem brvdif2
StepHypRef Expression
1 brvdif 36327 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
2 df-br 5071 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
31, 2xchbinx 333 1 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2108  Vcvv 3422  cdif 3880  cop 4564   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator