| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif2 | Structured version Visualization version GIF version | ||
| Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.) |
| Ref | Expression |
|---|---|
| brvdif2 | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvdif 38297 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) | |
| 2 | df-br 5090 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 〈cop 4579 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |