Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvdif2 Structured version   Visualization version   GIF version

Theorem brvdif2 36401
Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.)
Assertion
Ref Expression
brvdif2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)

Proof of Theorem brvdif2
StepHypRef Expression
1 brvdif 36400 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
2 df-br 5075 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
31, 2xchbinx 334 1 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2106  Vcvv 3432  cdif 3884  cop 4567   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator