Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvdif2 Structured version   Visualization version   GIF version

Theorem brvdif2 37597
Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.)
Assertion
Ref Expression
brvdif2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)

Proof of Theorem brvdif2
StepHypRef Expression
1 brvdif 37596 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
2 df-br 5149 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
31, 2xchbinx 334 1 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2105  Vcvv 3473  cdif 3945  cop 4634   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator