| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif2 | Structured version Visualization version GIF version | ||
| Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018.) |
| Ref | Expression |
|---|---|
| brvdif2 | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvdif 38221 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) | |
| 2 | df-br 5124 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2107 Vcvv 3463 ∖ cdif 3928 〈cop 4612 class class class wbr 5123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |