| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif | Structured version Visualization version GIF version | ||
| Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018.) |
| Ref | Expression |
|---|---|
| brvdif | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brv 5417 | . 2 ⊢ 𝐴V𝐵 | |
| 2 | brdif 5148 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ (𝐴V𝐵 ∧ ¬ 𝐴𝑅𝐵)) | |
| 3 | 1, 2 | mpbiran 709 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 Vcvv 3437 ∖ cdif 3895 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 |
| This theorem is referenced by: brvdif2 38372 brvbrvvdif 38374 dfssr2 38664 |
| Copyright terms: Public domain | W3C validator |