Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvdif Structured version   Visualization version   GIF version

Theorem brvdif 35962
Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018.)
Assertion
Ref Expression
brvdif (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)

Proof of Theorem brvdif
StepHypRef Expression
1 brv 5332 . 2 𝐴V𝐵
2 brdif 5085 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ (𝐴V𝐵 ∧ ¬ 𝐴𝑅𝐵))
31, 2mpbiran 708 1 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  Vcvv 3409  cdif 3855   class class class wbr 5032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-dif 3861  df-un 3863  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033
This theorem is referenced by:  brvdif2  35963  brvbrvvdif  35965  dfssr2  36179
  Copyright terms: Public domain W3C validator