| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif | Structured version Visualization version GIF version | ||
| Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018.) |
| Ref | Expression |
|---|---|
| brvdif | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brv 5434 | . 2 ⊢ 𝐴V𝐵 | |
| 2 | brdif 5162 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ (𝐴V𝐵 ∧ ¬ 𝐴𝑅𝐵)) | |
| 3 | 1, 2 | mpbiran 709 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 Vcvv 3450 ∖ cdif 3913 class class class wbr 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 |
| This theorem is referenced by: brvdif2 38246 brvbrvvdif 38248 dfssr2 38485 |
| Copyright terms: Public domain | W3C validator |