![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brvdif | Structured version Visualization version GIF version |
Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018.) |
Ref | Expression |
---|---|
brvdif | ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brv 5486 | . 2 ⊢ 𝐴V𝐵 | |
2 | brdif 5204 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ (𝐴V𝐵 ∧ ¬ 𝐴𝑅𝐵)) | |
3 | 1, 2 | mpbiran 709 | 1 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 Vcvv 3481 ∖ cdif 3963 class class class wbr 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 |
This theorem is referenced by: brvdif2 38258 brvbrvvdif 38260 dfssr2 38495 |
Copyright terms: Public domain | W3C validator |