![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brvvdif | Structured version Visualization version GIF version |
Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.) |
Ref | Expression |
---|---|
brvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvdif 38255 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
2 | df-br 5152 | . 2 ⊢ (𝐴((V × V) ∖ 𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅)) | |
3 | df-br 5152 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | 3 | notbii 320 | . 2 ⊢ (¬ 𝐴𝑅𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3481 ∖ cdif 3963 〈cop 4640 class class class wbr 5151 × cxp 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 |
This theorem is referenced by: brvbrvvdif 38260 |
Copyright terms: Public domain | W3C validator |