| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvvdif | Structured version Visualization version GIF version | ||
| Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.) |
| Ref | Expression |
|---|---|
| brvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvdif 38248 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
| 2 | df-br 5108 | . 2 ⊢ (𝐴((V × V) ∖ 𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅)) | |
| 3 | df-br 5108 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ 𝐴𝑅𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 〈cop 4595 class class class wbr 5107 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: brvbrvvdif 38253 |
| Copyright terms: Public domain | W3C validator |