Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvvdif Structured version   Visualization version   GIF version

Theorem brvvdif 36329
Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.)
Assertion
Ref Expression
brvvdif ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))

Proof of Theorem brvvdif
StepHypRef Expression
1 opelvvdif 36325 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-br 5071 . 2 (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅))
3 df-br 5071 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
43notbii 319 . 2 𝐴𝑅𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 2, 43bitr4g 313 1 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422  cdif 3880  cop 4564   class class class wbr 5070   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586
This theorem is referenced by:  brvbrvvdif  36330
  Copyright terms: Public domain W3C validator