Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvvdif Structured version   Visualization version   GIF version

Theorem brvvdif 38310
Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.)
Assertion
Ref Expression
brvvdif ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))

Proof of Theorem brvvdif
StepHypRef Expression
1 opelvvdif 38306 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-br 5090 . 2 (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅))
3 df-br 5090 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
43notbii 320 . 2 𝐴𝑅𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 2, 43bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436  cdif 3894  cop 4579   class class class wbr 5089   × cxp 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620
This theorem is referenced by:  brvbrvvdif  38311
  Copyright terms: Public domain W3C validator