Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvvdif Structured version   Visualization version   GIF version

Theorem brvvdif 35629
Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.)
Assertion
Ref Expression
brvvdif ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))

Proof of Theorem brvvdif
StepHypRef Expression
1 opelvvdif 35625 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-br 5053 . 2 (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅))
3 df-br 5053 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
43notbii 323 . 2 𝐴𝑅𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 2, 43bitr4g 317 1 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2115  Vcvv 3480  cdif 3916  cop 4556   class class class wbr 5052   × cxp 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5053  df-opab 5115  df-xp 5548
This theorem is referenced by:  brvbrvvdif  35630
  Copyright terms: Public domain W3C validator