Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brvvdif | Structured version Visualization version GIF version |
Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018.) |
Ref | Expression |
---|---|
brvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvdif 36517 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
2 | df-br 5090 | . 2 ⊢ (𝐴((V × V) ∖ 𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅)) | |
3 | df-br 5090 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | 3 | notbii 319 | . 2 ⊢ (¬ 𝐴𝑅𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅) |
5 | 1, 2, 4 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3894 〈cop 4578 class class class wbr 5089 × cxp 5612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-xp 5620 |
This theorem is referenced by: brvbrvvdif 36522 |
Copyright terms: Public domain | W3C validator |