|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > caov31d | Structured version Visualization version GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) | 
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) | 
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | 
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | 
| Ref | Expression | 
|---|---|
| caov31d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 2 | caovd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 4 | 1, 2, 3 | caovcomd 7630 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴)) | 
| 5 | 4 | oveq1d 7447 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = ((𝐶𝐹𝐴)𝐹𝐵)) | 
| 6 | caovd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 7 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 8 | 2, 6, 3, 1, 7 | caov32d 7654 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) | 
| 9 | 3, 6, 2, 1, 7 | caov32d 7654 | . 2 ⊢ (𝜑 → ((𝐶𝐹𝐵)𝐹𝐴) = ((𝐶𝐹𝐴)𝐹𝐵)) | 
| 10 | 5, 8, 9 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 | 
| This theorem is referenced by: caov13d 7657 | 
| Copyright terms: Public domain | W3C validator |