Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov31d | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
Ref | Expression |
---|---|
caov31d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | caovd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | caovcomd 7426 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴)) |
5 | 4 | oveq1d 7250 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = ((𝐶𝐹𝐴)𝐹𝐵)) |
6 | caovd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
7 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
8 | 2, 6, 3, 1, 7 | caov32d 7450 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
9 | 3, 6, 2, 1, 7 | caov32d 7450 | . 2 ⊢ (𝜑 → ((𝐶𝐹𝐵)𝐹𝐴) = ((𝐶𝐹𝐴)𝐹𝐵)) |
10 | 5, 8, 9 | 3eqtr4d 2789 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 (class class class)co 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6359 df-fv 6409 df-ov 7238 |
This theorem is referenced by: caov13d 7453 |
Copyright terms: Public domain | W3C validator |