Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr4d | Structured version Visualization version GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4d | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eqtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
3 | 3eqtr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | eqtr4d 2782 | . 2 ⊢ (𝜑 → 𝐷 = 𝐴) |
5 | 1, 4 | eqtr4d 2782 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Copyright terms: Public domain | W3C validator |