Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov32d | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
Ref | Expression |
---|---|
caov32d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
3 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | caovcomd 7362 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵)) |
5 | 4 | oveq2d 7188 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐴𝐹(𝐶𝐹𝐵))) |
6 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
7 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
8 | 6, 7, 2, 3 | caovassd 7365 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
9 | 6, 7, 3, 2 | caovassd 7365 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))) |
10 | 5, 8, 9 | 3eqtr4d 2783 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 (class class class)co 7172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-iota 6297 df-fv 6347 df-ov 7175 |
This theorem is referenced by: caov31d 7388 |
Copyright terms: Public domain | W3C validator |