MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov32d Structured version   Visualization version   GIF version

Theorem caov32d 7386
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
Assertion
Ref Expression
caov32d (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov32d
StepHypRef Expression
1 caovd.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
2 caovd.2 . . . 4 (𝜑𝐵𝑆)
3 caovd.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3caovcomd 7362 . . 3 (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵))
54oveq2d 7188 . 2 (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐴𝐹(𝐶𝐹𝐵)))
6 caovd.ass . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
7 caovd.1 . . 3 (𝜑𝐴𝑆)
86, 7, 2, 3caovassd 7365 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
96, 7, 3, 2caovassd 7365 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵)))
105, 8, 93eqtr4d 2783 1 (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  (class class class)co 7172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-iota 6297  df-fv 6347  df-ov 7175
This theorem is referenced by:  caov31d  7388
  Copyright terms: Public domain W3C validator